Nav: Home

Plenaries at American Chemical Society meeting will focus on computers in chemistry

March 03, 2016

Scientists, in four plenary talks, will explore a variety of subjects related to the "Computers in Chemistry" theme of the 251st National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society. The meeting will take place March 13-17 in San Diego.

The presentations, which are among more than 12,500 scheduled to take place at the meeting, will be held on Sunday, March 13, from 3 p.m. to 6 p.m. PDT, in Room 20A-C of the San Diego Convention Center.

Overall, the presentations will illustrate the wide variety of applications for computers in science from helping develop more potent anti-HIV agents to creating brand-new proteins with the help of the general public. The titles of the plenary talks are listed below:
  • George Schatz, Ph.D.: "Using self-assembly to make functional materials: Computational perspectives"
  • Sharon Hammes-Schiffer, Ph.D.: "Proton-coupled electron transfer in catalysis and energy conversion"
  • David Baker, Ph.D.: "Post-evolutionary biology: Design of novel protein structures, functions and assemblies"
  • William Jorgensen, Ph.D.: "30 years of free energy perturbation theory: From free energies of hydration to drug discovery"
-end-
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 158,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: TwitterFacebook

Schatz:

Title
Using self-assembly to make functional materials: Computational perspectives

Abstract
Self-assembly of amphiphilic molecules provides a way to make nanoscale (and larger) supramolecular structures including micelles, ribbons, sheets and aggregates that are important in biomedical applications. Soft materials composed of crystalline superlattices of nanoparticles can be fabricated using DNA, RNA and similar molecules to act as linkers of the nanoparticles. This talk describes computational methods that can be used to model the assembly of these materials and to determine the chemical and optical properties of the assembled structures. Emphasis will be placed on the use of theory to guide and interpret experiment, and to optimize structure and function.

Hammes-Schiffer:

Title

Proton-coupled electron transfer in catalysis and energy conversion

Abstract
Proton-coupled electron transfer (PCET) reactions play a vital role in a wide range of chemical and biological processes. Recent advances in the theory of PCET will be presented. The quantum mechanical effects of the active electrons and transferring proton, as well as the motions of the proton donor-acceptor mode and solvent or protein environment, are included in a general theoretical formulation. This formulation enables the calculation of rate constants and kinetic isotope effects for comparison to experiment. Applications to PCET reactions in solution, enzymes, and electrochemical systems will be presented. Studies of the enzyme soybean lipoxygenase provide a physical explanation for the experimental observation of unusually high kinetic isotope effects for C-H bond activation at room temperature. Investigations of molecular electrocatalysts for hydrogen production identify the thermodynamically and kinetically favorable mechanisms and guide the theoretical design of more effective molecular electrocatalysts. In addition, recent developments of theoretical approaches for simulating the ultrafast dynamics of photoinduced PCET will be discussed. These calculations provide insights into the roles of proton vibrational relaxation and nonequilibrium solvent dynamics in photoinduced PCET processes.

Baker:

Title

Post-evolutionary biology: Design of novel protein structures, functions and assemblies

Abstract
Proteins mediate the critical processes of life and beautifully solve the challenges faced during the evolution of modern organisms. Our goal is to design a new generation of proteins that address current day problems not faced during evolution. In contrast to traditional protein engineering efforts, which have focused on modifying naturally occurring proteins, we design new proteins from scratch based on Anfinsen's principle that proteins fold to their global free energy minimum. We compute amino acid sequences predicted to fold into proteins with new structures and functions, produce synthetic genes encoding these sequences, and characterize them experimentally. I will describe the design of ultra-stable idealized proteins, flu neutralizing proteins, high affinity ligand binding proteins, and self-assembling protein nanomaterials. I will also describe the contributions of the general public to these efforts through the distributed computing project Rosetta@Home and the online protein folding and design game Foldit. Finally, I will briefly describe significant progress in ab initio protein structure prediction.

Jorgensen:

Title

30 years of free energy perturbation theory: From free energies of hydration to drug discovery

Abstract
FEP calculations have had a revolutionary effect on computational chemistry. In conjunction with molecular dynamics and Monte Carlo simulations, they have enabled the calculation of free energy changes for wide-ranging phenomena including fundamental solution thermodynamics, conformational equilibria, reactions in solution, and protein-ligand binding. An overview of our FEP efforts beginning with the ethane to methanol calculation in 1985 and leading to our recent discoveries of extraordinarily potent anti-HIV agents and inhibitors of human macrophage migration inhibitory factor (MIF) will be presented.

American Chemical Society

Related Chemistry Articles:

The chemistry of olive oil (video)
Whether you have it with bread or use it to cook, olive oil is awesome.
With more light, chemistry speeds up
Light initiates many chemical reactions. Experiments at the Laser Centre of the Institute of Physical Chemistry of the Polish Academy of Sciences and the University of Warsaw's Faculty of Physics have for the first time demonstrated that increasing the intensity of illumination some reactions can be significantly faster.
The chemistry of whiskey (video)
Derby Day means it's time to recognize the chemical process of distillation, which makes bourbon possible.
Restoration based on chemistry
Considered the pinnacle of mediaeval painting, the Ghent Altarpiece was painted around 1432 by Jan van Eyck and probably his brother Hubert.
The chemistry of redheads (video)
The thing that sets redheads apart from the crowd is pigmentation.
Scientists discover helium chemistry
The scientists experimentally confirmed and theoretically explained the stability of Na2He.
What might Trump mean for chemistry? (video)
Donald Trump is now the 45th president of the US.
Chemistry on the edge
Defects and jagged surfaces at the edges of nanosized platinum and gold particles are key hot spots for chemical reactivity, researchers confirmed using a unique infrared probe at Berkeley Lab.
Light powers new chemistry for old enzymes
Princeton researchers have developed a method that irradiates biological enzymes with light to expand their highly efficient and selective capacity for catalysis to new chemistry.
Better chemistry through...chemistry
Award-winning UCSB professor Bruce Lipshutz is out to make organic chemistry better for the planet

Related Chemistry Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#520 A Closer Look at Objectivism
This week we broach the topic of Objectivism. We'll be speaking with Keith Lockitch, senior fellow at the Ayn Rand Institute, about the philosophy of Objectivism as it's taught through Ayn Rand's writings. Then we'll speak with Denise Cummins, cognitive scientist, author and fellow at the Association for Psychological Science, about the impact of Objectivist ideology on society. Related links: This is what happens when you take Ayn Rand seriously Another Critic Who Doesn’t Care What Rand Thought or Why She Thought It, Only That She’s Wrong Quote is from "A Companion to Ayn Rand"