Nav: Home

The maximum earthquake magnitude for North Turkey

March 03, 2016

03.03.2016: Geoscientists and natural disaster management experts are well aware of the risk prevailing in the megacity of Istanbul: The Istanbul metropolitan region faces a high probability for a large earthquake in the near future. The question is: how large can such an earthquake be?

Scientists from the GFZ German Research Centre for Geosciences together with a colleague from the University of Southern California have examined the earthquake maxima along the North Anatolian Fault Zone and came to the astonishing conclusion that mega quakes of magnitude M8 are exclusively to be expected in the east of this earthquake region. On the other hand the maximum earthquake magnitude to be expected in northwestern Turkey including the Istanbul-Marmara region does not exceed M7.5.

Seismologist, Marco Bohnhoff, from the GFZ explains: "We have compiled a new catalogue on historical seismicity for the North Anatolian Fault Zone (NAFZ) dating back to 300 years BC, thus, covering a time period of 2300 years. It is interesting to notice that in the North West of Turkey an earthquake with a magnitude larger than 7.5 has never been observed. On the other hand in eastern Turkey magnitudes of up to M8 are well documented."

The observations can be explained by the age of the fault zone. The NAFZ extends through northern Turkey along more than 900 km from the northern Aegean Sea almost towards the Caucasus. The fault reflects the tectonic boundary between the Anatolian plate and the Eurasian plate in the North. The Anatolian plate and with it the whole country of Turkey, moves towards the west and hereby interlocks with the Eurasian plate. The plate movement results in an accumulation of stress along the plate boundary that is released in large earthquakes with recurrence periods of several hundreds of years.

The just published new catalogue of historical earthquakes, together with further key parameters such as age, cumulative fault offset, slip rates and maximum length of coherent fault segments reveal a logical explanation.

Geoscientist Bohnhoff: "We were able to demonstrate that the smaller earthquake magnitudes in the west are closely linked to the earlier stage in fault-zone evolution there with an approx. age of eight million years. In comparison the eastern part of the NAFZ with an age of twelve to thirteen million years, is older and more mature. The largest M8 earthquakes solely occur along the older eastern part that also has longer consistent segments".

This is due to the fact that continental transform faults such as the NAFZ have a life cycle. The rock does not fracture along the whole fault zone all at once but rather in sub-segments. In the run of millions of years some of these segments coalesce due to repeated activation during earthquakes. Thus, due to the older age in the east these longer uniform sections are capable of generating larger ruptures and, therefore, larger earthquakes can be found in the east as compared to the west where the segments are still comparatively small and have not coalesced.

For Istanbul this implies that: Earthquakes as large as M8 are not expected there before further fault evolution that may take several millennia. This is important to estimate upper bounds for the seismic hazard and risk of the city.

This, however, by no means reduces the general seismic hazard for the metropolitan region since the NAFZ is located only 20 km away from the historic city center below the seafloor of the Marmara Sea where an up to M 7.5 earthquake can cause a great threat to the local population and infrastructure.

The results of the newly published study are relevant for the estimation of expected maximum magnitudes in highly populated regions, as well as for the determination of seismic hazards and the accompanying risks and, last but not least, they provide important baselines for adapting building codes.
-end-
Marco Bohnhoff, Patricia Martínez-Garzón, Fatih Bulut, Eva Stierle, Yehuda Ben-Zion: "Maximum earthquake magnitudes along different sections of the North Anatolian fault zone", Tectonophysics, 03.03.2016, DOI: 10.1016/j.tecto.2016.02.028 http://www.sciencedirect.com/science/article/pii/S0040195116001256

Figures in a printable resolution may be found here:

Fig. 1: The Anatolian Plate and the North Anatolian fault zone and the quake distribution (graphics: GFZ) https://media.gfz-potsdam.de/gfz/wv/05_Medien_Kommunikation/Bildarchiv/Erdbebengef%C3%A4hrdung%20T%C3%BCrkei/10363_MapTurkeyEnglish.png

Fig. 2: Aerial view of Western Istanbul. The western branch of the North Anatolian Fault Zone runs along the sea bottom of the Marmara Sea (left; photo: M. Bohnhoff, GFZ) https://media.gfz-potsdam.de/gfz/wv/05_Medien_Kommunikation/Bildarchiv/Erdbebengef%c3%a4hrdung%20T%c3%bcrkei/10346_Istanbul_air.jpg

GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

Related Earthquake Articles:

Earthquake symmetry
A recent study investigated around 100,000 localized seismic events to search for patterns in the data.
Crowdsourcing speeds up earthquake monitoring
Data produced by Internet users can help to speed up the detection of earthquakes.
Geophysics: A surprising, cascading earthquake
The Kaikoura earthquake in New Zealand in 2016 caused widespread damage.
How fluid viscosity affects earthquake intensity
A young researcher at EPFL has demonstrated that the viscosity of fluids present in faults has a direct effect on the intensity of earthquakes.
Earthquake in super slo-mo
A big earthquake occurred south of Istanbul in the summer of 2016, but it was so slow that nobody noticed.
A milestone for forecasting earthquake hazards
In a new study in Science Advances, researchers report that their physics-based model of California earthquake hazards replicated estimates from the state's leading statistical model.
Mw 5.4 Pohang earthquake tied to geothermal activity?
The Mw 5.4 Pohang earthquake that occurred near a geothermal site in South Korea last year was likely triggered by fluid injection at the geothermal plant, two separate reports conclude.
Seismologists introduce new measure of earthquake ruptures
A team of seismologists has developed a new measurement of seismic energy release that can be applied to large earthquakes.
Residual strain despite mega earthquake
On Christmas Day 2016, the earth trembled in southern Chile.
The losses that come after the earthquake: Devastating and costly
The study, titled, 'Losses Associated with Secondary Effects in Earthquakes,' published by Frontiers in Built Environmen, looks at the devastation resulting from secondary disasters, such as tsunamis, liquefaction of sediments, fires, landslides, and flooding that occurred during 100 key earthquakes that occurred from 1900 to the present.
More Earthquake News and Earthquake Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.