Nav: Home

New method for producing heart cells may hold the key to treating heart failure

March 03, 2016

Scientists at the Gladstone Institutes have discovered how to make a new type of cell that is in between embryonic stem cells and adult heart cells, and that may hold the key to treating heart disease. These induced expandable cardiovascular progenitor cells (ieCPCs) can organically develop into heart cells, while still being able to replicate. When injected into a mouse after a heart attack, the cells improved heart function dramatically.

"Scientists have tried for decades to treat heart failure by transplanting adult heart cells, but these cells cannot reproduce themselves, and so they do not survive in the damaged heart," explained Yu Zhang, MD, PhD, lead author on the study and a postdoctoral scholar at the Gladstone Institutes. "Our generated ieCPCs can prolifically replicate and reliably mature into the three types of cells in the heart, which makes them a very promising potential treatment for heart failure."

Cardiovascular progenitor cells (CPCs) are generated naturally as the heart forms in an embryo and give rise to a selection of different kinds of heart cells. In the current study, published in the journal Cell Stem Cell, the researchers were able to create CPCs in the lab. They used pharmaceutical drugs to catch and maintain heart stem cells at the cardiac precursor state before they developed into fully-functional heart cells.

Organ-specific stem cells are special because they can both develop into adult cells and replicate indefinitely. In the current study, the ieCPCs expanded exponentially over a dozen generations, creating enough cells to potentially treat numerous patients. This type of self-renewal is particularly important for treating heart failure, as more than one billion heart cells can be lost after a heart attack. Prolific cell renewal means ieCPCs could be a sustainable way to replace those damaged cells. ieCPCs can also develop into each of the three different types of heart cells: cardiomyocytes, endothelial cells, and smooth muscle cells. When injected into a heart, the cells spontaneously transitioned into these cells without needing any additional signals.

Previous attempts to treat heart failure by transplanting adult heart cells have largely failed because the new cells die off quickly and do not self-renew, meaning their ability to repopulate a diseased heart is limited. Additionally, only one type of heart cell--cardiomyocytes, or beating heart muscle cells--are typically used in transplants, but a heart requires all three types of cells to heal and function properly. Injecting non-cardiac stem cells into the heart has also had limited success at treating heart failure. This is because the injected cells are not effective at transitioning into heart cells, as they require complex signals to make the change, which are absent in an adult heart. Transplanting non-cardiac stem cells also increases the risk for tumor formation, as many of the cells turn into other cell types besides the target heart cells. ieCPCs avoid this problem as they are already locked into their fate of becoming heart cells.

In the current study, 90% of ieCPCs injected and retained in a mouse heart after a heart attack successfully transformed into functioning heart cells, beating with the existing cells and creating new blood vessels. The ieCPCs significantly improved heart function, causing the heart to pump more efficiently, and the benefits lasted for at least three months. Because these cells are generated from skins cells, it opens the door for personalized medicine, using a patient's own cells to treat their heart disease.

"Cardiac progenitor cells could be ideal for heart regeneration," said senior author Sheng Ding, PhD, a senior investigator at Gladstone. "They are the closest precursor to functional heart cells, and, in a single step, they can rapidly and efficiently become heart cells, both in a dish and in a live heart. With our new technology, we can quickly create billions of these cells in a dish and then transplant them into damaged hearts to treat heart failure."
-end-
Other Gladstone scientists on the study were Nan Cao, Yu Huang, Ian Spencer, Ji-dong Fu, Chen Yu, Kai Liu, Baoming Nie, Tao Xu, Ke Li, Shaohua Xu, Benoit Bruneau, and Deepak Srivastava.

About the Gladstone Institutes

To ensure our work does the greatest good, the Gladstone Institutes focuses on conditions with profound medical, economic, and social impact--unsolved diseases of the brain, the heart, and the immune system. Affiliated with the University of California, San Francisco, Gladstone is an independent, nonprofit life science research organization that uses visionary science and technology to overcome disease.

Gladstone Institutes

Related Heart Disease Articles:

Where you live could determine risk of heart attack, stroke or dying of heart disease
People living in parts of Ontario with better access to preventive health care had lower rates of cardiac events compared to residents of regions with less access, found a new study published in CMAJ (Canadian Medical Association Journal).
Older adults with heart disease can become more independent and heart healthy with physical activity
Improving physical function among older adults with heart disease helps heart health and even the oldest have a better quality of life and greater independence.
Dietary factors associated with substantial proportion of deaths from heart disease, stroke, and disease
Nearly half of all deaths due to heart disease, stroke, and type 2 diabetes in the US in 2012 were associated with suboptimal consumption of certain dietary factors, according to a study appearing in the March 7 issue of JAMA.
Certain heart fat associated with higher risk of heart disease in postmenopausal women
For the first time, researchers have pinpointed a type of heart fat, linked it to a risk factor for heart disease and shown that menopausal status and estrogen levels are critical modifying factors of its associated risk in women.
Maternal chronic disease linked to higher rates of congenital heart disease in babies
Pregnant women with congenital heart defects or type 2 diabetes have a higher risk of giving birth to babies with severe congenital heart disease and should be monitored closely in the prenatal period, according to a study published in CMAJ.
Novel heart valve replacement offers hope for thousands with rheumatic heart disease
A novel heart valve replacement method is revealed today that offers hope for the thousands of patients with rheumatic heart disease who need the procedure each year.
Younger heart attack survivors may face premature heart disease death
For patients age 50 and younger, the risk of premature death after a heart attack has dropped significantly, but their risk is still almost twice as high when compared to the general population, largely due to heart disease and other smoking-related diseases The risk of heart attack can be greatly reduced by quitting smoking, exercising and following a healthy diet.
Citrus fruits could help prevent obesity-related heart disease, liver disease, diabetes
Oranges and other citrus fruits are good for you -- they contain plenty of vitamins and substances, such as antioxidants, that can help keep you healthy.
Gallstone disease may increase heart disease risk
A history of gallstone disease was linked to a 23 percent increased risk of developing coronary heart disease.
Americans are getting heart-healthier: Coronary heart disease decreasing in the US
Coronary heart disease is one of the leading causes of death in the United States.

Related Heart Disease Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".