Nav: Home

Alzheimer's disease: Early biomarker defined

March 03, 2016

A multicenter study led by Christian Haass and Michael Ewers of Ludwig-Maximilians-Universitaet (LMU) in Munich has identified a biomarker associated with the activation of an innate immune response to neural damage during early stages of Alzheimer's disease.

Alzheimer's disease results from the accumulation in the brain of protein deposits that are toxic to nerve cells. The deposits themselves are largely comprised of insoluble aggregates of so-called beta-amyloid peptides - short fragments cleaved from a protein found on nerve-cell membranes - and they begin to form decades before any overt symptoms of dementia emerge. Now research teams led by Christian Haass, who holds the Chair of Metabolic Biochemistry at LMU and is the speaker of the German Center for Neurodegenerative Diseases (DZNE) in Munich, and Professor Michael Ewers of the Institute for Stroke and Dementia Research (ISD) at Munich University Medical Center, now report that the concentration of a specific segment of the protein TREM2 in cerebrospinal fluid (CSF) is significantly elevated in early stages of Alzheimer's disease. "Our findings indicate that TREM2 plays an important role in the progression of Alzheimer's, and perhaps even other forms of dementia. It appears to be part of a defense mechanism that involves phagocytic cells that eliminate damaged nerve cells and toxic protein deposits, such as those made up of beta-amyloid peptides," says Haass. The new study has now been published in the journal EMBO Molecular Medicine.

TREM2 is a cell-surface receptor that is essential for the function of specialized phagocytic cells called microglia, which are found only in the brain. Microglial cells serve as an arm of the innate immune system and act as the brain's waste disposal squad, recognizing and destroying cell debris and other types of toxic particulate material. The detection by Haass, Ewers and colleagues of increased concentrations of a soluble fragment of TREM2 in the CSF of patients with mild symptoms of Alzheimer's disease forges a further link between the protein and the neurodegenerative disorder. The same researchers had previously shown that mutations that affect TREM2 function also reduce the ability of microglia to clear amyloid aggregates and damaged cells.

An informative and versatile marker

In their latest work, the LMU team studied over 400 Alzheimer's patients who showed cognitive defects of varying severity, and compared them with age-matched controls. Biochemical analyses of samples of CSF revealed that patients who exhibited mild cognitive deficits had the highest concentrations of a particular fragment of the TREM2 protein found in the study. The amounts detected in patients with advanced Alzheimer's disease were significantly lower. "This correlates with the level of activity of the microglial cells, which falls off as the condition progresses. This in turn presumably means that less beta-amyloid and cell debris can be cleared away," Haass points out. "We therefore believe that this biomarker provides us with a way to assess the capacity of innate immune cells in the brain to degrade and dispose toxic material."

At the current stage it is still unclear whether the changes in the concentration of the TREM2 fragment in the CSF is a cause or a consequence of disease progression. However, the researchers favor the idea that the early increase in the level of TREM2 is attributable to the activation of microglia in response to initial signs of damage to the nerve cells in the brain. "Our results indicate that the alterations in TREM2 reflect physiological changes that occur at an early stage in the development of Alzheimer's dementia. This makes TREM2 interesting from a therapeutic perspective," says Michael Ewers.

The new biomarker could also make it possible to monitor the efficacy of novel anti-inflammatory approaches for treatment of Alzheimer's disease. In addition, measurements of the levels of TREM2 in the CSF could help to define the most effective window for early interventions to combat or control the disorder. The LMU researchers propose a long-term longitudinal study, in which the concentration of TREM2 in CSF samples from individuals with mutations known to be linked to familial Alzheimer's disease is determined at regular intervals under controlled conditions.
-end-


Ludwig-Maximilians-Universität München

Related Dementia Articles:

Flies the key to studying the causes of dementia
A research team from the University of Plymouth, University of Southampton and the Alexander Fleming Biomedical Sciences Research Center, Vari, Greece, have studied two structurally-similar proteins in the adult brain and have found that they play distinct roles in the development of dementia.
Stroke prevention may also reduce dementia
Ontario's stroke prevention strategy appears to have had an unexpected, beneficial side effect: a reduction also in the incidence of dementia among older seniors.
Dementia: The right to rehabilitation
Rehabilitation is important for people with dementia as it is for people with physical disabilities, according to a leading dementia expert.
One in 4 elderly Australian women have dementia
At least a quarter of Australian women over 70 will develop dementia according to University of Queensland researchers.
Rural dementia -- we need to talk
Research carried out by Plymouth University into the experience of dementia in farming and farming families, and its impact on their businesses and home lives, has identified four areas of concern which need to be addressed if dementia in the countryside is to be managed.
Women with dementia receive less medical attention
Women with dementia have fewer visits to the GP, receive less health monitoring and take more potentially harmful medication than men with dementia, new UCL research reveals.
Dementia on the downslide, especially among people with more education
In a hopeful sign for the health of the nation's brains, the percentage of American seniors with dementia is dropping, a new study finds.
New study suggests rethink of dementia causes
University of Adelaide researchers have developed a new theory for the causes of dementia and other neurodegenerative diseases, involving an out-of-control immune system.
Bleeding stroke associated with onset of dementia
Bleeding within the brain, or intracerebral hemorrhage, was associated with a high risk of developing dementia post stroke, according to research presented at the American Stroke Association's International Stroke Conference 2016.
Dementia: New insights into causes of loss of orientation
The University of Exeter Medical School led two studies, each of which moves us a step closer to understanding the onset of dementia, and potentially to paving the way for future therapies.

Related Dementia Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".