Nav: Home

Neuronal calculations consider expectations

March 03, 2016

Our visual environment is incredibly complex. The smallest of spaces contain innumerable colours, structures and contrasts. Despite this we are able to identify objects and movements with high accuracy. Even the fruit fly, which only has a fraction of our neurons, can manage these distinctions. Researchers from the Max Planck Institute of Neurobiology in Martinsried have now found evidence that the visual system of the fruit fly has adapted optimally to the features of the environment over millions of years. The unequal distribution of bright and dark regions in nature is reflected in similarly asymmetric processing by the fly brain.

Without us being aware of it, our visual system tackles incredibly difficult tasks every second. For example, to be able to reach for a pen, our brain must distinguish its form and texture quickly and accurately from dozens of other - often very similar - objects in the environment. This process works under a very wide variety of light conditions and against almost any kind of background. To facilitate the processing of such visual information, the visual system incorporates expectations of typical features of the environment into its calculations. Alexander Borst and his team at the Max Planck Institute of Neurobiology have investigated how these expectations factor into neuronal calculations in the fruit fly Drosophila melanogaster.

Course correction in a virtual environment

In their experiments, the researchers made use of an innate behaviour of flies. The animals steady their course with the help of what is known as the optomotor reaction. For example, if a fly is blown off course to the left by a gust of wind, the entire world rotates to the right from its perspective. To get back on course, flies reliably rotate in the same direction as the perceived image, in this instance to the right. To study the principles behind this course correction, the researchers built a virtual environment for the animals. Three computer monitors led the fly to believe that it was navigating through different natural environments while sensors followed its movements on an air-suspended polyurethane ball.

"I crawled through the woods around the institute for days with my smart phone, to record the panorama images we used in these experiments," reports Aljoscha Leonhardt, one of the study's first authors. The researchers occasionally simulated a virtual gust of wind by briefly rotating the environment on the screens to the right or left. As in nature, Drosophila skilfully adjusted to this optical drift: within a fraction of a second, the insect was moving straight again through the virtual world.

The researchers then used a genetic trick to suppress the activity of the neurons that calculate the direction of movement in the fly brain and ultimately trigger the fly's rotation. In a similar way to vertebrates, this computation is performed in two parallel channels in the fly's optical system: once for increases in brightness (ON channel) and once for reductions in brightness (OFF channel). The former is carried out in T4 cells and the latter in T5 cells. When both types of neurons were switched off, the animals were no longer able to see the movement of their environment and could not correct their course. However, if only one of the channels was switched off, to the astonishment of the neurobiologists, the flies continued to compensate for the virtual gusts of wind rapidly and efficiently. Hence each of the two channels appears to respond optimally to environmental changes.

Parallel but different

However, further tests revealed that considerable differences exist between the two channels. For example, while the T4 cells of the ON channel responded very strongly to slowly moving bright edges, the T5 cells of the OFF channel were mainly active in the presence of rapid dark edges. To test whether this asymmetry represents an adaptation to nature, the researchers simulated the network on the computer. They trained virtual T4 and T5 cells to estimate the speed of moving natural images as precisely as possible.

The result showed a very similar asymmetry to that observed in the earlier physiological tests. "We assume that the functional differences between T4 and T5 cells developed as an adaptation to the different distribution of bright and dark in the natural visual environment," explains Georg Ammer, the second first author of the study. Incorporating expectations of the natural environmental conditions makes the visual processing more reliable and efficient. Because people and flies live in similar visual environments, it is conceivable that this insight into visual processing in the fly brain is also applicable to the human brain.
Original paper:

Aljoscha Leonhardt, Georg Ammer, Matthias Meier, Etienne Serbe, Armin Bahl and Alexander Borst
Asymmetry of Drosophila ON and OFF motion detectors enhances real-world velocity estimation
Nature Neuroscience; 29 February, 2016


Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
Neurons that fire together, don't always wire together
As the adage goes 'neurons that fire together, wire together,' but a new paper published today in Neuron demonstrates that, in addition to response similarity, projection target also constrains local connectivity.
Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons
Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.