Nav: Home

Neuronal calculations consider expectations

March 03, 2016

Our visual environment is incredibly complex. The smallest of spaces contain innumerable colours, structures and contrasts. Despite this we are able to identify objects and movements with high accuracy. Even the fruit fly, which only has a fraction of our neurons, can manage these distinctions. Researchers from the Max Planck Institute of Neurobiology in Martinsried have now found evidence that the visual system of the fruit fly has adapted optimally to the features of the environment over millions of years. The unequal distribution of bright and dark regions in nature is reflected in similarly asymmetric processing by the fly brain.

Without us being aware of it, our visual system tackles incredibly difficult tasks every second. For example, to be able to reach for a pen, our brain must distinguish its form and texture quickly and accurately from dozens of other - often very similar - objects in the environment. This process works under a very wide variety of light conditions and against almost any kind of background. To facilitate the processing of such visual information, the visual system incorporates expectations of typical features of the environment into its calculations. Alexander Borst and his team at the Max Planck Institute of Neurobiology have investigated how these expectations factor into neuronal calculations in the fruit fly Drosophila melanogaster.

Course correction in a virtual environment

In their experiments, the researchers made use of an innate behaviour of flies. The animals steady their course with the help of what is known as the optomotor reaction. For example, if a fly is blown off course to the left by a gust of wind, the entire world rotates to the right from its perspective. To get back on course, flies reliably rotate in the same direction as the perceived image, in this instance to the right. To study the principles behind this course correction, the researchers built a virtual environment for the animals. Three computer monitors led the fly to believe that it was navigating through different natural environments while sensors followed its movements on an air-suspended polyurethane ball.

"I crawled through the woods around the institute for days with my smart phone, to record the panorama images we used in these experiments," reports Aljoscha Leonhardt, one of the study's first authors. The researchers occasionally simulated a virtual gust of wind by briefly rotating the environment on the screens to the right or left. As in nature, Drosophila skilfully adjusted to this optical drift: within a fraction of a second, the insect was moving straight again through the virtual world.

The researchers then used a genetic trick to suppress the activity of the neurons that calculate the direction of movement in the fly brain and ultimately trigger the fly's rotation. In a similar way to vertebrates, this computation is performed in two parallel channels in the fly's optical system: once for increases in brightness (ON channel) and once for reductions in brightness (OFF channel). The former is carried out in T4 cells and the latter in T5 cells. When both types of neurons were switched off, the animals were no longer able to see the movement of their environment and could not correct their course. However, if only one of the channels was switched off, to the astonishment of the neurobiologists, the flies continued to compensate for the virtual gusts of wind rapidly and efficiently. Hence each of the two channels appears to respond optimally to environmental changes.

Parallel but different

However, further tests revealed that considerable differences exist between the two channels. For example, while the T4 cells of the ON channel responded very strongly to slowly moving bright edges, the T5 cells of the OFF channel were mainly active in the presence of rapid dark edges. To test whether this asymmetry represents an adaptation to nature, the researchers simulated the network on the computer. They trained virtual T4 and T5 cells to estimate the speed of moving natural images as precisely as possible.

The result showed a very similar asymmetry to that observed in the earlier physiological tests. "We assume that the functional differences between T4 and T5 cells developed as an adaptation to the different distribution of bright and dark in the natural visual environment," explains Georg Ammer, the second first author of the study. Incorporating expectations of the natural environmental conditions makes the visual processing more reliable and efficient. Because people and flies live in similar visual environments, it is conceivable that this insight into visual processing in the fly brain is also applicable to the human brain.
-end-
Original paper:

Aljoscha Leonhardt, Georg Ammer, Matthias Meier, Etienne Serbe, Armin Bahl and Alexander Borst
Asymmetry of Drosophila ON and OFF motion detectors enhances real-world velocity estimation
Nature Neuroscience; 29 February, 2016

Max-Planck-Gesellschaft

Related Neurons Articles:

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Graham
If former Minneapolis police officer Derek Chauvin's case for the death of George Floyd goes to trial, there will be this one, controversial legal principle looming over the proceedings: The reasonable officer. In this episode, we explore the origin of the reasonable officer standard, with the case that sent two Charlotte lawyers on a quest for true objectivity, and changed the face of policing in the US. This episode was produced by Matt Kielty with help from Kelly Prime and Annie McEwen. Support Radiolab today at Radiolab.org/donate.