Nav: Home

Stop signals against protein clumps

March 03, 2016

Protein aggregates are deemed to be one reason for the death of nerve cells in disorders such as Alzheimer's or Huntington's disease. As researchers at the Max Planck Institute of Biochemistry report in the current issue of Nature, they have now decoded a new cellular mechanism for the development of aggregates. Missing stop signals in the production of proteins lead erroneously to long lysine chains at the end of the protein. This in turn blocks the ribosomes, the cell's protein factory. Healthy cells detect blocked ribosomes and rapidly destroy useless proteins. If the necessary quality control machinery does not function properly, defective proteins accumulate and form toxic aggregates.

In order to be able to treat neurodegenerative disorders in future, researcher Ulrich Hartl, Head of the Department of Cellular Biochemistry at the Max Planck Institute of Biochemistry, and his team have for many years been studying the cellular causes for the death of nerve cells. A determining cause is believed to be protein deposits - aggregates of misfolded proteins. "We were able to show that the formation of aggregates is promoted by defects in the protein blueprint and these are not detected by the internal quality control machinery", explains Young-Jun Choe, first author of the study together with Sae-Hun Park.

In each cell, proteins perform vital functions, acting as small molecular machines. "DNA can be envisaged as a huge library of protein blueprints that are located in the cell nucleus. To manufacture a protein, a copy of the blueprint, the mRNA, is first made. This is then directed from the cell nucleus to the ribosomes, which then build the protein from amino acids", says Choe.

Essential stop signal

The mRNA contains a start signal, the information about the protein structure, a stop signal and, at the end, a poly(A) tail. If the blueprint is damaged, for example due to radiation or mutagenic substances, this can lead to the loss of this stop signal. As a result, once the protein has been manufactured in the ribosomes, the completed protein cannot be released. Instead, the poly(A) tail is interpreted as the blueprint and additional amino acids are attached. The lysine chain that is positively charged as a result blocks the protein factory and the manufacture of protein comes to a standstill.

Healthy cells have a very efficient quality control process when it comes to the manufacture of protein. Misfolded and useless proteins are selected, repaired or rapidly destroyed. Ltn1p is an important component of quality control. "If Ltn1p is not active in pathologically modified cells or if other components of quality control are missing, defective proteins accumulate and form aggregates in cell interiors", says Park.

Using a mouse model, the researchers can now demonstrate the fatal consequences of a quality control malfunction. Animals with the relevant mutation show symptoms of advanced neurodegeneration and a restricted ability to move.

Sticky clumps

The protein aggregates that develop have a sticky surface and act as a seed. They ultimately also bind functioning proteins, which are free of defects and vital for the cell. As a result, the cell is destabilized and, in the long run, is damaged. Interestingly, according to Ulrich Hartl, the cell seems to follow a known pattern in this regard. "We already know from previous studies on the protein huntingtin, which spontaneously forms aggregates and is responsible for the development of the neurodegenerative disorder Huntington's disease, that protein aggregates also bind to essential proteins that have no defects."

"Our results not only demonstrate a potential mechanism for the development of neurodegenera-tive disorders but we have also found another example of the way in which proteins can form aggregates and damage the cell. This confirms our assumption that the suppression of the aggregation of proteins represents a promising therapeutic approach for a large number of neurodegenerative disorders that are currently still incurable", says Hartl, summarizing the results of the study.
-end-
Original publication

Y.-J. Choe & S.-H. Park, T. Hassemer, R. Körner, L. Vincenz-Donnelly, M. Hayer-Hartl & F.-U. Hartl

Failure of RQC machinery causes protein aggregation and proteotoxic stress.

Nature; 29 February, 2016 (DOI: 10.1038/nature16973)

Max-Planck-Gesellschaft

Related Amino Acids Articles:

Alzheimer's: Can an amino acid help to restore memories?
Scientists at the Laboratoire des Maladies Neurodégénératives (CNRS/CEA/Université Paris-Saclay) and the Neurocentre Magendie (INSERM/Université de Bordeaux) have just shown that a metabolic pathway plays a determining role in Alzheimer's disease's memory problems.
New study indicates amino acid may be useful in treating ALS
A naturally occurring amino acid is gaining attention as a possible treatment for ALS following a new study published in the Journal of Neuropathology & Experimental Neurology.
Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.
To make amino acids, just add electricity
By finding the right combination of abundantly available starting materials and catalyst, Kyushu University researchers were able to synthesize amino acids with high efficiency through a reaction driven by electricity.
Nanopores can identify the amino acids in proteins, the first step to sequencing
While DNA sequencing is a useful tool for determining what's going on in a cell or a person's body, it only tells part of the story.
Differentiating amino acids
Researchers develop the foundation for direct sequencing of individual proteins.
Simulating amino acid starvation may improve dengue vaccines
In a new paper in Science Signaling, researchers at the University of Hyderabad in India and the Cornell University College of Veterinary Medicine show that a plant-based compound called halofuginone improves the immune response to a potential vaccine against dengue virus.
CoP-electrocatalytic reduction of nitroarenes: a controllable way to azoxy-, azo- and amino-aromatic
The development of a green, efficient and highly controllable manner to azoxy-, azo- and amino-aromatics from nitro-reduction is extremely desirable both from academic and industrial points of view.
Origin of life insight: peptides can form without amino acids
Peptides, one of the fundamental building blocks of life, can be formed from the primitive precursors of amino acids under conditions similar to those expected on the primordial Earth, finds a new UCL study published in Nature.
Researchers develop fast, efficient way to build amino acid chains
Researchers report that they have developed a faster, easier and cheaper method for making new amino acid chains -- the polypeptide building blocks that are used in drug development and industry -- than was previously available.
More Amino Acids News and Amino Acids Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.