Nav: Home

New research links mitochondrial dysfunction to the development of FECD

March 03, 2016

Researchers at Schepens Eye Research Institute of Massachusetts Eye and Ear have shown a link between mitochondrial dysfunction in corneal endothelial cells and the development of Fuchs' Endothelial Corneal Dystrophy. This study, published today in the journal, Antioxidants & Redox Signaling, is the first study to demonstrate that lifelong accumulation of oxidative DNA damage leads to mitochondrial dysfunction and subsequent cell death in the tissue of the corneal endothelium. These changes are the result of free radical-induced molecular changes that are characteristic of FECD.

FECD is an age-related and genetic eye disease that affects up to four percent of the U.S. population over the age of 40 and is becoming more prevalent in women. It is one of the most common causes of corneal swelling and may progress to blindness if left untreated. Currently, corneal transplantation is the only course of treatment to restore lost vision in patients with FECD.

"Our first goal is to identify the cause of cell death in FECD," said Ula Jurkunas, M.D., Principal Investigator on the study, Associate Professor of Ophthalmology at Mass. Eye and Ear and Harvard Medical School (HMS), and Co-Director of the HMS Ophthalmology Cornea Center of Excellence. "This is a significant advancement in that process and moves us one step closer to our ultimate goal, which is to provide FECD patients with alternative and safer treatments options to transplantation."

The function of the corneal endothelium is to keep the cornea clear. Because endothelial cells do not divide in humans, they are very prone to DNA damage from ultraviolet light or from the byproducts of energy production in the mitochondria. In FECD, the underlying genetic defects make the corneal endothelial cells even more susceptible to damage, and eventually cause dysfunction in the mitochondria.

In their study, the researchers detected an increase in mitochondrial and nuclear DNA damage in FECD and correlated the damage with loss of mitochondrial energy production. The result was mitochondrial fragmentation followed by release of cytochrome c, a small protein associated with the inner membrane of the mitochondrion. These age-induced molecular changes underscore the degenerative aspects of FECD pathogenesis. Although surgical therapies are effective in treating FECD, they all involve tissue transplantation. The research team will now focus on development of novel cytoprotective and anti-aging therapies that could provide alternative and safer treatment options for FECD patients.
-end-
In addition to Dr. Jurkunas, authors on the paper include: Adna Halilovic, Thore Schmedt, Anne-Sophie Benischke, Cecily Hamill, Yuming Chen of Schepens Eye Research Institute of Mass. Eye and Ear and Janine Hertzog Santos, of the National Institutes of Health.

This work was supported by a NEI/NIH RO1 Ey020581, and an Alcon Research Institute Young Investigator Grant.

About Massachusetts Eye and Ear

Mass. Eye and Ear clinicians and scientists are driven by a mission to find cures for blindness, deafness and diseases of the head and neck. Now united with Schepens Eye Research Institute, Mass. Eye and Ear is the world's largest vision and hearing research center, developing new treatments and cures through discovery and innovation. Mass. Eye and Ear is a Harvard Medical School teaching hospital and trains future medical leaders in ophthalmology and otolaryngology, through residency as well as clinical and research fellowships. Internationally acclaimed since its founding in 1824, Mass. Eye and Ear employs full-time, board-certified physicians who offer high-quality and affordable specialty care that ranges from the routine to the very complex. U.S. News & World Report's "Best Hospitals Survey" has consistently ranked the Mass. Eye and Ear Departments of Otolaryngology and Ophthalmology as top in the nation. For more information about life-changing care and research, or to learn how you can help, please visit MassEyeAndEar.org.

About Harvard Medical School Department of Ophthalmology

The Harvard Medical School (HMS) Department of Ophthalmology is one of the leading and largest academic departments of ophthalmology in the nation. More than 350 full-time faculty and trainees work at ten HMS affiliate institutions, including Massachusetts Eye and Ear, Schepens Eye Research Institute of Massachusetts Eye and Ear, Massachusetts General Hospital, Brigham and Women's Hospital, Boston Children's Hospital, Beth Israel Deaconess Medical Center, Joslin Diabetes Center/Beetham Eye Institute, Veterans Affairs Boston Healthcare System, VA Maine Healthcare System, and Cambridge Health Alliance. Formally established in 1871, the department has been built upon a strong and rich foundation in medical education, research, and clinical care. Through the years, faculty and alumni have profoundly influenced ophthalmic science, medicine, and literature--helping to transform the field of ophthalmology from a branch of surgery into an independent medical specialty at the forefront of science.

Massachusetts Eye and Ear Infirmary

Related Cell Death Articles:

Starvation causes atypical cell death
Researchers from IDIBELL -- within the Marie Curie ITN TRAIN-ERs -- have characterized the cell death process due to starvation, in which the endoplasmic reticulum plays a leading role.
An 'IRBIT'uary before cell death
Billions of cells in our bodies die every day in an important process called apoptosis.
APOL1 linked to reduced nephrocyte function, increased cell size, accelerated cell death
A Children's National Health System research team has uncovered a novel process by which the gene APOL1 contributes to renal disease, according to a paper published Nov.
Neurobiology: Epigenetics and neural cell death
Researchers from Ludwig-Maximilians-Universitaet (LMU) in Munich have demonstrated how deregulation of an epigenetic mechanism that is active only in the early phases of neurogenesis triggers the subsequent death of neural cells.
Cell death: How a protein drives immune cells to suicide
For some pathogens, attack is the best form of defense -- they enter immune cells of the human body.
Brain cell death in Alzheimer's linked to structural flaw
Researchers have identified a new biological pathway involved in Alzheimer's disease.
Clarifying the role of CHOP/GADD153 in cell death
In the May 2016 Nature Communications, investigators at the Medical University of South Carolina report that CHOP/GADD153-dependent apoptosis is mediated by the micro-RNA miR-216b.
New insights in cancer therapy from cell death research
Killed cancer cells serve as a potent anti-cancer vaccine Researchers in the group of Prof.
New class of drugs specifically induces cell death in B cell blood cancers
New research from The Wistar Institute shows how one protein found on the endoplasmic reticulum can serve as a target for stimulating the immune system and a more direct target for cellular death in B cell malignancies.
Scientists reveal alternative route for cell death
Researchers at St. Jude Children's Research Hospital have uncovered a new pathway for mitochondrial cell death that involves the protein BCL-2 ovarian killer otherwise known as BOK.

Related Cell Death Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...