Nav: Home

MSU discovers a new kind of stem cell

March 03, 2016

EAST LANSING, Mich. - Scientists at Michigan State University have discovered a new kind of stem cell, one that could lead to advances in regenerative medicine as well as offer new ways to study birth defects and other reproductive problems.

In the current issue of the journal Stem Cell Reports, Tony Parenti, lead author and MSU cell and molecular biology graduate student, unearthed the new cells - induced XEN cells, or iXEN - in a cellular trash pile, of sorts.

"Other scientists may have seen these cells before, but they were considered to be defective, or cancer-like," said Parenti, who works in the lab of Amy Ralston, MSU biochemist, cell and molecular biologist and co-author of the study. "Rather than ignore these cells that have been mislabeled as waste byproducts, we found gold in the garbage."

A great deal of stem cell research focuses on new ways to make and use pluripotent stem cells. Pluripotent stem cells can be created by reactivating embryonic genes to "reprogram" mature adult cells. Reprogramming mature cells into induced pluripotent stem cells, or iPS cells, allows them to become malleable building blocks that can morph into any cell in the body.

For example, if a patient has a defective liver, healthy cells could be taken from the patient, reprogrammed into iPS cells, which could then be used to help regenerate the person's failing organ. Taking cells from the same patient may greatly reduce the chance of the body rejecting the new treatment, Parenti said.

Prior to the discovery of reprogramming, scientists developed pluripotent stem cells from embryos. However, the embryo produces not only pluripotent stem cells, but also XEN cells, a stem cell type with unique properties. While pluripotent stem cells produce cells in the body, XEN cells produce extraembryonic tissues that play an essential but indirect role in fetal development.

Parenti and his team speculated that if the embryo produces both pluripotent and XEN cells, this might also occur during reprogramming.

The eureka moment came when Parenti discovered colonies of iXEN cells popping up like weeds in his iPS cell cultures. Using mice models, the team spent six months proving that these genetic weeds are not cancer-like, as previously suspected, but in fact, a new kind of stem cell with desirable properties.

Even more surprising, the team found that by inhibiting expression of XEN genes during reprogramming, they could decrease production of iXEN cells and increase production of iPS cells.

"Nature makes stem cells perfectly, but we are still trying to improve our stem cell production," Parenti said. "We took what we learned by studying the embryo and applied it to reprogramming, and this opened up a new way to optimize reprogramming."

The team wouldn't have made this breakthrough without the high level of collaboration and access to cutting-edge facilities at Michigan State, he added.

The next steps of this research will involve seeing if this process occurs in human cells. XEN cells have yet to be discovered in humans, but the possibility of their existence is a key focus of the field.

"It's a missing tool that we don't have yet," Ralston said. "It's true that XEN cells have characteristics that pluripotent stem cells do not have. Because of those traits, iXEN cells can shed light on reproductive diseases. If we can continue to unlock the secrets of iXEN cells, we may be able to improve induced pluripotent stem cell quality and lay the groundwork for future research on tissues that protect and nourish the human embryo."
-end-
Additional MSU researchers contributing to this study include Keith Latham, Michael Halbisen and Kai Wang.

The National Institutes of Health funded this research through grants R03 HD077112, R01 HD075093, and R01 GM104009.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Michigan State University

Related Stem Cell Articles:

Interferon-beta producing stem cell-derived immune cell therapy on liver cancer
Induced pluripotent stem (iPS) cell-derived myeloid cells (iPS-ML) that produce the anti-tumor protein interferon-beta (IFN-beta) have been produced and analyzed by researchers from Kumamoto University, Japan.
Scientists aim to create the world's largest sickle cell disease stem cell library
Scientists at the Center for Regenerative Medicine at Boston Medical Center and Boston University School of Medicine are creating an induced pluripotent stem cell (iPSC)-based research library that opens the door to invaluable sickle cell disease research and novel therapy development.
Designer switches of cell fate could streamline stem cell biology
Researchers at the University of Wisconsin-Madison have developed a novel strategy to reprogram cells from one type to another in a more efficient and less biased manner than previous methods.
Allen Institute for cell science releases gene edited human stem cell lines
The Allen Institute for Cell Science has released the Allen Cell Collection: the first publicly available collection of gene edited, fluorescently tagged human induced pluripotent stem cells that target key cellular structures with unprecedented clarity.
Feng Zhang receives 2016 New York Stem Cell Foundation -- Robertson Stem Cell Prize
The New York Stem Cell Foundation (NYSCF) announced today that Feng Zhang, Ph.D., is the 2016 recipient of the NYSCF -- Robertson Stem Cell Prize for his pioneering advances to edit human and plant genomes using CRISPR-Cas9.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
More of a good thing is not always better -- and certainly not if you are a stem cell
Stem cell research led by the Babraham Institute has uncovered key new knowledge about how placental stem cells switch between maintaining a stem cell identity to setting off down the route to becoming specialized cell types.
A snapshot of stem cell expression
Research from the Wellcome Genome Campus demonstrates the power of single-cell genomics: Study reveals new genes involved in pluripotency, new subpopulations of cells and new methods to find meaning in the data.

Related Stem Cell Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.