Nav: Home

Parasites help brine shrimp cope with arsenic habitat contamination

March 03, 2016

Artemia (the scientific name of the small crustacean that is also commonly known as 'sea monkey') is famous for being able to live in extreme environments and has become a model organism used to test the toxicity of chemicals in water. In addition, Artemia can produce dormant eggs, known as cysts, that can be stored for long periods and hatched on demand to provide a convenient form of live feed for the seafood industry, and 2000 tonnes of Artemia cysts per year are sold worldwide.

Marta Sánchez and Andy Green, both from the Estación Biológica de Doñana in Seville, Spain, and colleagues are interested in environmental parasitology, i.e., the study of interactions between parasites and pollution or climate change. Artemia is an intermediate host for tapeworms that eventually infect water birds such as flamingos and grebes, and the researchers had previously shown that tapeworm infection can change the shrimps' physiology and behavior.

For this study, the researchers collected brine shrimp from a highly polluted estuary in Spain and determined their infection status with tapeworm larvae. During the first collection in April 2014, 98% of the shrimp were infected, about half of them with only one species of parasite. One month later, in May 2014, again 98% of Artemia were infected, most of them with more than one tapeworm species.

Both samples were used for toxicity testing with arsenic, a pollutant that is commonly found in concentrations considered harmful in the estuaries where the shrimp came from. To their surprise, the researchers found that infected shrimp were consistently more resistant to arsenic than uninfected ones. This was true not only at 25 degrees Celsius (the temperature under which both samples were tested), but also at 29 degrees (tested on some of the shrimp from the larger May sample). Overall, the 4-degree increase--consistent with current climate-change predictions for the change in mean temperature--made the shrimp more vulnerable to arsenic toxicity.

To examine how parasite infection might protect the shrimp against arsenic toxicity, the researchers collected another sample from the same location in May 2015. Infection details were similar to the May 2014 sample. Comparing infected and uninfected Artemia, they found increased numbers of fat-containing droplets in the infected shrimp. Parasite infection was also associated with significant changes in oxidative stress markers.

Lipids such as those in lipid droplets are thought to be able to protect organisms against pollutants by sequestering toxins away from sensitive target sites--a principle known as 'survival of the fattest'. Regarding oxidative stress, the researchers speculate that the tapeworm parasites benefit from healthy intermediate hosts with high chances of becoming tasty food for flamingos, grebes and other final avian hosts.

Their study, the researchers say "provides the first empirical evidence that parasites can increase resistance to metal or metalloid pollution, rather than decrease it. It is also the first study to consider the influence of temperature change on parasite-pollutant interactions." They add that the results "contradict the pre-existing view that pollution and parasites are stressors that both have negative effects on the health of free living organisms", and suggest that additional studies in other host-parasite systems are warranted to evaluate the broader relevance of these findings.
-end-
Contact:
Marta I. Sánchez
e-mail: marta.sanchez@ebd.csic.es
phone: +34.954.466.700, ext 1205

Andy J. Green
email: ajgreen@ebd.csic.es
phone: +34.699.450.383

Please use this URL to provide readers access to the paper (Link goes live upon article publication): http://dx.plos.org/10.1371/journal.ppat.1005459

Related Image for Press Use: https://www.plos.org/wp-content/uploads/2013/05/2016.03.03_Sanchez_strikingimage.jpg

Caption: Artemia infected by tapeworm larvae contain carotenoid-rich lipid droplets induced by the parasite. Sample provided by Marta Sánchez; photography by Javier Díaz Real.

Authors and Affiliations:
Marta I. Sánchez, Estación Biológica de Doñana, (EBD-CSIC), Spain
Inès Pons, Estación Biológica de Doñana, (EBD-CSIC), Spain
Mónica Martínez-Haro, University of Coimbra, Coimbra, Portugal; Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Spain
Mark A. Taggart, University of the Highlands and Islands, United Kingdom
Thomas Lenormand, National Centre for Scientific Research (CNRS), France
Andy J. Green, Estación Biológica de Doñana, (EBD-CSIC), Spain

Please contact plospathogens@plos.org if you would like more information.

Funding: This work was funded by the Spanish Ministry of Economy and Competitiveness through the Severo Ochoa Program for Centres of Excellence in R+D+I (SEV-2012-0262) and the I+D+i National Plan (Project CGL2013-47674-P). MIS was supported by a Ramón y Cajal postdoctoral contract from the Spanish Ministry of Science and Innovation (MICINN). MMH was supported by a Marie Curie Intra-European Fellowship for Career Development (PIEF-GA-2011-299747) within the 7th Framework Programme (FP7 2007-2013) of the European Commission. Currently, MMH benefits from a postdoctoral contract funded by the Junta de Comunidades de Castilla-La Mancha (POST 2014/7780). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Citation: Sánchez MI, Pons I, Martínez-Haro M, Taggart MA, Lenormand T, Green AJ (2016) When Parasites Are Good for Health: Cestode Parasitism Increases Resistance to Arsenic in Brine Shrimps. PLoS Pathog 12(3): e1005459. doi:10.1371/journal.ppat.1005459

PLOS

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.