Nav: Home

When liquids get up close and personal with powders

March 03, 2016

Every cook knows that dissolving powder into a liquid, such as semolina in milk or polenta in water, often creates lumps. What they most likely don't know is that physicists spend a lot of time attempting to understand what happens in those lumps. In a review paper published in EPJ E, scientists from the École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI), France, share their insights following ten years of research into the wetting of soluble polymer substrates by droplets of solvents like water.

In this article, the authors focus specifically on the first stage of powder dissolution, as water gets into every pore of the powder-- a stage called imbibition--and not on the latter, dissolution stage. Typical experiments in the field involve studying the mechanisms of how a droplet of water spreads onto a water-soluble polymer layer over time. As the droplet spreads, the solvent content in the substrate varies. The way the droplet spreads therefore varies according to the variations in the substrate composition on the edge of the droplet.

As a result, scientists now understand the two reasons why certain powders, like flour, which have very long polymer chains, are difficult to dissolve. At the microscopic level, spontaneous imbibition is stopped because of a change in the material softness as the solvent melts the polymer. Thus turning the substrate into a gel and slowing the droplet's spreading. In parallel, hydration results in high solvent affinity for the material to be wetted and the droplet's ability to spread. Hence, the more solvent reaches the substrate, the more the solvent tends to spread on it. Scientists have yet to identify the typical size of the grains and pores or the size distribution of grains and pores that need to be fine-tuned to accelerate the imbibition and, at a later stage, the subsequent dissolution.
-end-
Reference: Wetting of polymers by their solvents. F. Lequeux, L. Talini, E. Verneuil, G. Delannoy and P. Valois (2016), Eur. Phys. J. E 39: 12, DOI 10.1140/epje/i2016-16012-y

Springer

Related Polymer Articles:

New polymer material may help batteries become self-healing, recyclable
Lithium-ion batteries are notorious for developing internal electrical shorts that can ignite a battery's liquid electrolytes, leading to explosions and fires.
Unique polymer fibres: Light, strong, and tough
Strong and tough yet as light as a feather - materials with this exceptional combination of properties are urgently needed in many industrial sectors and in medicine, as well as being of great interest for scientific research.
Researchers add order to polymer gels
Gel-like materials have a wide range of applications, especially in chemistry and medicine.
Bundlemers (new polymer units) could transform industries
From tires to clothes to shampoo, many ubiquitous products are made with polymers, large chain-like molecules made of smaller sub-units, called monomers, bonded together.
New synthetic polymer degradable under very mild acidic conditions
A new type of degradable synthetic polymer was prepared by Rh-catalyzed three-component polymerization of a bis(diazocarbonyl) compound, bis(1,3-diketone), and tetrahydrofuran.
New polymer tackles PFAS pollution
toxic polyfluorinated alkyl substances (PFAS) pollution -- commonly used in non-stick and protective coatings, lubricants and aviation fire-fighting foams -- can now be removed from the environment thanks to a new low-cost, safe and environmentally friendly polymer.
New polymer films conduct heat instead of trapping it
MIT engineers have flipped the picture of the standard polymer insulator, by fabricating thin polymer films that conduct heat -- an ability normally associated with metals.
Polymer reversibly glows white when stretched
Polymers that change their appearance in response to mechanical forces can warn of damage developing in a material before the stress causes structural failure.
New materials: Growing polymer pelts
Polymer pelts made of the finest of fibers are suitable for many different applications, from coatings that adhere well and are easy to remove to highly sensitive biological detectors.
A record-long polymer DNA negative
A fragment of a single strand of DNA, built of the nucleobases cytosine and guanine, can be imprinted in a polymer - this has been shown by chemists from Warsaw, Denton and Milan.
More Polymer News and Polymer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.