Scientists reveal alternative route for cell death

March 03, 2016

Researchers at St. Jude Children's Research Hospital have uncovered a new pathway for mitochondrial cell death that involves the protein BCL-2 ovarian killer otherwise known as BOK. The discovery, which is described online in the journal Cell, may lead to new ways to trigger cell death in some types of cancer cells.

"The newly discovered mechanism for mitochondrial cell death is by the effector protein BOK which is normally targeted for destruction at the endoplasmic reticulum," said Doug Green, Ph.D., chair of the St. Jude Department of Immunology and corresponding author of the study. "This pathway of molecular events appears to be intrinsically tied to the levels of stress experienced by the cell and ensures the rapid, programmed destruction of both the cell and its contents."

Cell death is a mechanism used by multicellular organisms to help them survive by removing infected, damaged or unwanted cells. Mitochondria are known as the energy-generating organelles of the cell. However, they may also activate cell death under certain conditions and assist in the removal of damaged cells from the body.

The mitochondrial pathway of cell death (apoptosis) starts by permeabilization of the mitochondrial outer membrane which becomes peppered with small holes. The leakage of proteins like cytochrome c and other molecules from the space between the inner and outer membranes of the mitochondria into the cytosol activates caspase proteases and sets in motion a series of reactions that lead to the rapid demise of the cell.

"BOK is an effector of mitochondrial apoptosis that appears to work in a different way to known proteins that initiate mitchondrial cell death," said Fabien Llambi, Research Laboratory Specialist at St. Jude and the first author of the paper. "The stability of BOK appears to be directly related to the amount of cellular stress experienced within the endoplasmic reticulum."

The researchers revealed that BOK is controlled at the level of protein stability by components of the Endoplasmic Reticulum Associated Degradation or ERAD pathway. ERAD is a quality control mechanism that helps to detect and eliminate damaged and often unfolded proteins.

The scientists were also able to show that BOK works independently of BAK and BAX, two other members of the BCL-2 family of proteins that regulate and contribute to mitochondrial cell death.

"The fate of the cell during stress appears to be intricately wired to the signaling pathways, such as the BOK pathway we have discovered, that trigger mitochondrial cell death," added Green. "Our work also suggests that cancer cells expressing high levels of BOK may be particularly sensitive to inhibitors that target the proteasome or the ERAD pathway."

The development of specific inhibitors that target the ERAD pathway could provide useful alternatives to some of the known proteasome inhibitors that stop the growth of cancer cells. Some proteasome inhibitors affect multiple targets in ways that do not meet the desired level of specificity. An ERAD inhibitor might overcome this drawback. Further work is needed to identify suitable protein targets that would be amenable to this type of interference.
-end-
The study's other authors are Fabien Llambi, Yue-Ming Wang, Bernadette Victor, Mao Yang, Desiree M. Schneider, Sébastien Gingras, Melissa J. Parsons, Janet H. Zheng, Scott A. Brown, Stéphane Pelletier, Tudor Moldoveanu, and Taosheng Chen

This research was supported by funding from the National Institutes of Health (grants GM 096208 and GM 110034); and ALSAC.

St. Jude Children's Research Hospital

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.