Nav: Home

New TSRI study shows HIV structure in unprecedented detail

March 03, 2016

LA JOLLA, CA - March 3, 2016 - A new study from scientists at The Scripps Research Institute (TSRI) describes the high-resolution structure of the HIV protein responsible for recognition and infection of host cells.

The study, published today in the journal Science, is the first to show this HIV protein, known as the envelope (Env) trimer, in its natural or "native" form. The findings also include a detailed map of a vulnerable site at the base of this protein, as well as the binding site of an antibody that can neutralize HIV.

"This structure has been elusive because its fragility typically causes it to fall apart before it can be imaged," said TSRI Associate Professor Andrew Ward, senior author of the study. "Now that we know what the native state looks like, the next step is to look at vaccine applications."

Studying HIV's Defenses

Imagine an airplane going in for a landing. Now imagine the airport runway is covered with heaps of barbed wire.

This is the kind of challenge human antibodies face when they attempt to neutralize HIV.

"The immune system can generate a response, but those responses can't effectively hit the virus," said Ward.

Ideally, antibodies would be able to target HIV's Env trimer--three loosely connected proteins that stick out of the virus's membrane and enable the virus to fuse with and infect host cells. This "fusion machinery" is also a valuable target because its structure is highly conserved, meaning the same vulnerabilities exist on many strains of the virus, and antibodies against these sites could be "broadly neutralizing." Unfortunately, a "shield" of sugar molecules, called glycans, blocks many antibodies from reaching this region.

To develop a vaccine against HIV, researchers need a detailed map of these glycans to reveal the small holes in the shield where antibodies might penetrate and neutralize the underlying viral machinery.

The HIV trimer is notoriously unstable, however, making it hard for scientists to capture a good image. Partly due to this limitation, previous studies at TSRI and other institutions had shown only truncated trimers or high-resolution models of mutation-stabilized trimers. No one had a clear view of the trimer and its glycan defenses in their native form.

New Techniques Lead to Detailed Map

In the new study, the researchers employed cryo-electron microscopy (EM)--a 3D imaging technique that enables resolution of atomic-level details. TSRI maintains a state-of-the-art cryo-EM suite that includes a powerful Titan Krios cryo-electron microscope and a new generation of digital camera, the Gatan K2 Summit.

The researchers devised a strategy to extract and purify the fragile HIV Env trimer from its membrane environment and load it into the microscope for imaging. The process involved the use of an HIV broadly neutralizing antibody, PGT151, previously discovered in the lab of TSRI Professor Dennis Burton (also scientific director of the International AIDS Vaccine Initiative's (IAVI) Neutralizing Antibody Center and the National Institutes of Health (NIH)-sponsored Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), both at TSRI).

The resulting images included a more-complete trimer structure than ever seen before. Researchers could see the complete fusion machinery, complex glycans and a vaccine target called the membrane proximal external region (MPER). The structures also demonstrated that the trimer is malleable and can subtly alter its shape. This shape-shifting is both part of its fusion machinery and a way to dodge neutralizing antibody responses.

The structure also includes a highly detailed picture of the PGT151 site of vulnerability, the most complex and extensive broadly neutralizing epitope (site that antibodies can recognize) yet described. In addition to targeting several glycans on the surface of Env, PGT151 binds to the fusion peptide--rendering the virus unable to infect host cells.

In addition, the researchers used this more complete trimer to study an antibody that binds to MPER. In the past, 3D structures of this region had only been studied using trimer fragments.

The findings give researchers a better idea of the antibody traits needed to negotiate the glycan shield. "That's extremely important to know when you're trying to develop a vaccine against HIV," said Jeong Hyun Lee, a graduate student in the Ward lab and first author of the study.

Ward said the newly solved structure is similar to the Env trimer-mimicking structures being developed for an HIV vaccine and confirms that vaccine strategies are on target. Researchers can now build on that work to develop superior vaccine candidates.
In addition to Ward and Lee, the other author of the study, "Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer," was Gabriel Ozorowski of TSRI.

This work was supported by the National Institutes of Health (grant UM1 AI100663), the National Institutes of Health (NIH)-sponsored Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID) at TSRI, the International AIDS Vaccine Initiative's (IAVI) Neutralizing Antibody Consortium through the Bill & Melinda Gates Foundation's Collaboration for AIDS Vaccine Discovery (grants OPP1084519 and OPP1115782) and the California HIV/AIDS Research Program Dissertation Award. IAVI's support for the study was made possible in part by the generous support of the American people through the United States Agency for International Development (USAID), which administers the U.S. foreign assistance program providing economic and humanitarian assistance in more than 120 countries worldwide.

Scripps Research Institute

Related Hiv Articles:

The Lancet HIV: Severe anti-LGBT legislations associated with lower testing and awareness of HIV in African countries
This first systematic review to investigate HIV testing, treatment and viral suppression in men who have sex with men in Africa finds that among the most recent studies (conducted after 2011) only half of men have been tested for HIV in the past 12 months.
The Lancet HIV: Tenfold increase in number of adolescents on HIV treatment in South Africa since 2010, but many still untreated
A new study of more than 700,000 one to 19-year olds being treated for HIV infection suggests a ten-fold increase in the number of adolescents aged 15 to 19 receiving HIV treatment in South Africa, according to results published in The Lancet HIV journal.
Starting HIV treatment in ERs may be key to ending HIV spread worldwide
In a follow-up study conducted in South Africa, Johns Hopkins Medicine researchers say they have evidence that hospital emergency departments (EDs) worldwide may be key strategic settings for curbing the spread of HIV infections in hard-to-reach populations if the EDs jump-start treatment and case management as well as diagnosis of the disease.
NIH HIV experts prioritize research to achieve sustained ART-free HIV remission
Achieving sustained remission of HIV without life-long antiretroviral therapy (ART) is a top HIV research priority, according to a new commentary in JAMA by experts at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.
First ever living donor HIV-to-HIV kidney transplant
For the first time, a person living with HIV has donated a kidney to a transplant recipient also living with HIV.
The Lancet HIV: PrEP implementation is associated with a rapid decline in new HIV infections
Study from Australia is the first to evaluate a population-level roll-out of pre-exposure prophylaxis (PrEP) in men who have sex with men.
Researchers date 'hibernating' HIV strains, advancing BC's leadership in HIV cure research
Researchers have developed a novel way for dating 'hibernating' HIV strains, in an advancement for HIV cure research.
HIV RNA expression inhibitors may restore immune function in HIV-infected individuals
Immune activation and inflammation persist in the majority of treated HIV-infected individuals and is associated with excess risk of mortality and morbidity.
HIV vaccine elicits antibodies in animals that neutralize dozens of HIV strains
An experimental vaccine regimen based on the structure of a vulnerable site on HIV elicited antibodies in mice, guinea pigs and monkeys that neutralize dozens of HIV strains from around the world.
State-of-the-art HIV drug could curb HIV transmission, improve survival in India
An HIV treatment regimen already widely used in North America and Europe would likely increase the life expectancy of people living with HIV in India by nearly three years and reduce the number of new HIV infections by 23 percent with minimal impact on the country's HIV/AIDS budget.
More Hiv News and Hiv Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.