Nav: Home

How many types of neurons are there in the brain?

March 03, 2016

NEW YORK--For decades, scientists have struggled to develop a comprehensive census of cell types in the brain. Now, in a pair of companion papers, researchers at Columbia's Mortimer B. Zuckerman Mind Brain Behavior Institute describe powerful new approaches to systematically identify individual classes of brain cells, or neurons, in the spinal cord. In doing so, they reveal elements of the underlying circuit architecture through which these neurons shape movement--and highlight how statistical approaches could provide neuroscientists with a critical tool to quantify the cellular diversity of any region of the brain.

The papers are published today online in the journal Cell.

"Our work allows scientists to assess the diversity of neuronal cell classes in specific regions of the central nervous system--in part by plugging basic cellular characteristics into this fundamental statistical model," said Thomas M. Jessell, PhD, senior author on one of the papers and a co-director of the Zuckerman Institute. "As we continue to build upon and refine this method, scientists could take any cellular circuit and reveal its basic component parts. And once we understand the brain at this level, there are key problems of circuitry and function that can be addressed at a detailed level of resolution."

In today's newly published research, scientists focused on a group of neurons in the spinal cord called V1 interneurons, which form connections that orchestrate the activity and output of motor neurons, the class of neurons that give us the power to move.

"Motor neurons are like the strings of a marionette, with interneurons directing which strings are to be pulled, and in what order," said Jay Bikoff, PhD, a postdoctoral scholar at Columbia and first author of one of the papers. "Previous studies had shown that V1 interneurons are intimately involved in shaping motor neuron activity, but had been unable to determine precisely how they did so. We needed to classify the varieties of V1 interneurons in a much more systematic and detailed manner--information that would then help to decipher the circuits that underlie movement at an unprecedented organizational level."

There are many characteristics that distinguish one type of neuron from another, such as where it is located or what it looks like. But ultimately, the researchers argue, a neuron can be defined by its genetic identity.

"While at its core every neuron essentially contains the same genetic information, differences between the genes that are switched on, and those that remain dormant confer neurons with individual identities, like a fingerprint," said Mariano Gabitto, a doctoral candidate at Columbia in the department of neuroscience and the first author of the second paper. "So if you have a neuron's fingerprint, you can then use it to distinguish one class of neuron from the next, which is critical for dissecting the functional organization of the nervous system."

In this research, the scientists focused on finding that fingerprint. By studying the V1 interneurons of laboratory mice, researchers first identified 19 genetic 'switches,' called transcription factors, which--when activated in a particular combination--made the genetic profile of one V1 interneuron class different from another. What the scientists needed to do next was match the unique pattern of transcription factors to a particular type of interneuron, a feat that proved difficult with traditional experimental techniques.

Faced with this challenge, the researchers turned to theoretical neuroscientist Larry Abbott, PhD, and statistician Liam Paninski, PhD--colleagues at Columbia's Zuckerman Institute--as well as Ari Pakman, PhD, a postdoctoral fellow in Dr. Paninski's lab and co-first author in the second paper, to build a more powerful statistical model. Drs. Abbott, Paninski and Pakman developed a mathematical approach based on Bayesian regression analysis that provides the ability to account for uncertainty in a principled way, while also incorporating the complex genetics of the 19 transcription factors. The key computational tool that made this approach tractable was a sophisticated sampling algorithm developed by Dr. Pakman. Using this statistical model the research team was able to distinguish 50 distinct types of V1 interneurons--results that withstood even the toughest statistical and experimental scrutiny.

"Not only did this model reveal to us the number of distinct V1 interneuron types, it also allowed us to infer their precise locations in the spinal cord," said Dr. Jessell, who is also the Claire Tow Professor of Motor Neuron Disorders in the Department of Neuroscience and of Biochemistry and Molecular Biophysics at Columbia. "By combining experimental observation with statistical inference, it has been possible to develop a method that can take information about an interneuron's genetic identify and glean insight into its role directing muscle activation."

"What makes this work so foundational is that even with very limited data--such as the prevalence of these transcription factors combined with information on where the neurons were located--we could infer a detailed repertoire of cellular diversity," said Dr. Abbott, the William Bloor Professor of Theoretical Neuroscience, Physiology and Cellular Biophysics at Columbia who served as a senior author on the second paper.

"Some of the most exciting work in neuroscience these days involves efforts to combine many different kinds of experimental measurements using a single unified statistical model--and these papers are one example of this," said Dr. Paninski. "We're looking forward to further extending and generalizing these methods and applying them in other parts of the nervous system."
-end-
These papers are titled: Spinal inhibitory interneuron diversity delineates variant motor microcircuits," and "Bayesian sparse regression analysis documents the diversity of spinal inhibitory neurons." Additional contributors include Andre Rivard, PhD, Estelle Drobac, PhD, Timothy Machado, PhD, Andrew Miri, PhD, Susan Brenner-Morton, Erica Famojure, Carolyn Diaz, Francisco Alvarez, PhD, and George Mentis, PhD.

This research was supported by the National Institute for Neurological Disorders and Stroke (R01-NS047357), the National Institutes for Health (R01-NS078375, R21-NS079981, NS033245, MH093338), the Department of Defense (GR. 10235006), the Office of Naval Research (N00014-14-1-0243), the Army Research Office (W911NF-12-1-0594), the National Science Foundation, the Brain Research Foundation, the Harold and Leila Y. Mathers Foundation, the Gatsby Foundation, the Swartz Foundation and Project A.L.S.

The authors report no financial or other conflicts of interest.

About the Zuckerman Institute

Grasping the implications for the health of the brain, mind, and nervous system is perhaps the greatest challenge facing 21st-century science. To lead the way, Columbia University has established a comprehensive institute for the pursuit of interdisciplinary and collaborative research in brain science. Building on the University's distinguished history in the study and treatment of the brain, the Mortimer B. Zuckerman Mind Brain Behavior Institute will bring together 1,000 scientists in a single state-of-the-art engine of discovery--based at the Jerome L. Greene Science Center--now rising on the University's new Manhattanville campus. It will form the hub of an even larger collaborative network of academics stretching across all disciplines--including the arts, economics, law, and medicine--and campuses, from Columbia University Medical Center to Morningside Heights and beyond. To learn more, visit zuckermaninstitute.columbia.edu.

The Zuckerman Institute at Columbia University

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

The Fourth Edition of The Neuron provides a comprehensive first course in the cell and molecular biology of nerve cells. The book begins with properties of the many newly discovered ion channels that have emerged through mapping of the genome. These channels shape the way a single neuron generates varied patterns of electrical activity. Covered next are the molecular mechanisms that convert electrical activity into the secretion of neurotransmitter hormones at synaptic junctions between neurons. The following section examines the biochemical pathways that are linked to the action of... View Details


The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

The third edition of The Neuron provides a comprehensive first course in the cell and molecular biology of nerve cells. The first part of the book covers the properties of the many ion channels that shape the way a single neuron generates varied patterns of electrical activity, as well as the molecular mechanisms that convert electrical activity into the secretion of neurotransmitter hormones at synaptic junctions between neurons. The second part covers the biochemical pathways that are linked to the action of neurotransmitters and can alter the cellular properties of neurons or... View Details


From Neuron to Brain
by John G. Nicholls (Author), A. Robert Martin (Author), David A. Brown (Author), Mathew E. Diamond (Author), David A. Weisblat (Author), Paul A. Fuchs (Author)

From Neuron to Brain, Fifth Edition, provides a readable, up-to-date book for use in undergraduate, graduate, and medical school courses in neuroscience. As in previous editions, the emphasis is on experiments made by electrical recordings, molecular and cellular biological techniques, and behavioral studies on the nervous system, from simple reflexes to cognitive functions. Lines of research are followed from the inception of an idea to new findings being made in laboratories and clinics today.

A major change is that this edition begins with the anatomy and physiology of the... View Details


From Neurons to Neighborhoods : The Science of Early Childhood Development
by Committee on Integrating the Science of Early Childhood Development (Author), Youth, and Families Board on Children (Author), National Research Council (Author), Committee on Integrating the Science of Early Childhood Development (Author), Jack P. Shonkoff (Editor), Deborah A. Phillips (Editor)

How we raise young children is one of today's most highly personalized and sharply politicized issues, in part because each of us can claim some level of "expertise." The debate has intensified as discoveries about our development-in the womb and in the first months and years-have reached the popular media.

How can we use our burgeoning knowledge to assure the well-being of all young children, for their own sake as well as for the sake of our nation? Drawing from new findings, this book presents important conclusions about nature-versus-nurture, the impact of being born into a... View Details


The 7 Secrets of Neuron Leadership: What Top Military Commanders, Neuroscientists, and the Ancient Greeks Teach Us about Inspiring Teams
by W. Craig Reed (Author), Gordon R. England (Foreword)

Leadership techniques backed by the world's most effective teams

The 7 Secrets of Neuron Leadership offers a diverse collection of wisdom and practical knowledge to help you build and lead your most effective team yet. Written by a former U.S. Navy diver, this book draws from the author's experiences and beyond to reveal key truths about the nature of teamwork, and expose the core of effective team leadership. You'll go back to ancient Greece to discover the nine personality types and the seven types of love that form the foundation of human interaction, and learn how... View Details


From Photon to Neuron: Light, Imaging, Vision
by Philip Nelson (Author)

A richly illustrated undergraduate textbook on the physics and biology of light

Students in the physical and life sciences, and in engineering, need to know about the physics and biology of light. Recently, it has become increasingly clear that an understanding of the quantum nature of light is essential, both for the latest imaging technologies and to advance our knowledge of fundamental life processes, such as photosynthesis and human vision. From Photon to Neuron provides undergraduates with an accessible introduction to the physics of light and offers a unified view... View Details


The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition
by Gregory Hickok (Author)

An essential reconsideration of one of the most far-reaching theories in modern neuroscience and psychology.

In 1992, a group of neuroscientists from Parma, Italy, reported a new class of brain cells discovered in the motor cortex of the macaque monkey. These cells, later dubbed mirror neurons, responded equally well during the monkey’s own motor actions, such as grabbing an object, and while the monkey watched someone else perform similar motor actions. Researchers speculated that the neurons allowed the monkey to understand others by simulating their actions in its... View Details


From Neuron to Cognition via Computational Neuroscience (Computational Neuroscience Series)
by Michael A. Arbib (Editor), James J. Bonaiuto (Editor)

A comprehensive, integrated, and accessible textbook presenting core neuroscientific topics from a computational perspective, tracing a path from cells and circuits to behavior and cognition.

This textbook presents a wide range of subjects in neuroscience from a computational perspective. It offers a comprehensive, integrated introduction to core topics, using computational tools to trace a path from neurons and circuits to behavior and cognition. Moreover, the chapters show how computational neuroscience -- methods for modeling the causal interactions underlying neural... View Details


New Frontiers in Mirror Neurons Research
by Pier Francesco Ferrari (Editor), Giacomo Rizzolatti (Editor)

The discovery of mirror neurons caused a revolution in neuroscience and psychology. Nevertheless, because of their profound impact within life sciences, mirror neuron are still the subject of numerous debates concerning their origins and their functions. With more than 20 years of research in this area, it is timely to synthesise the expanding literature on this topic.

New Frontiers in Mirror Neurons provides a comprehensive overview of the latest advances in mirror neurons research - accessible both to experts and to non-experts. In the book, leading scholars draw on the... View Details


From Neuron to Brain: A Cellular and Molecular Approach to the Function of the Nervous System, Fourth Edition
by John G. Nicholls (Author), A. Robert Martin (Author), Bruce G. Wallace (Author), Paul A. Fuchs (Author)

In the 25 years since From Neuron to Brain was first published, the authors' aim has remained constant—to describe how nerve cells go about their business of transmitting signals, how the signals are put together, and how, out of this integration, higher functions emerge. The new Fourth Edition, while maintaining this focus, has been completely reformatted and updated.

The emphasis, as before, is on experiments, and on the way they are carried out. Using a narrative approach, the authors follow a line from the original inception of a new idea to an account of research being done today.... View Details

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Simple Solutions
Sometimes, the best solutions to complex problems are simple. But simple doesn't always mean easy. This hour, TED speakers describe the innovation and hard work that goes into achieving simplicity. Guests include designer Mileha Soneji, chef Sam Kass, sleep researcher Wendy Troxel, public health advocate Myriam Sidibe, and engineer Amos Winter.
Now Playing: Science for the People

#448 Pavlov (Rebroadcast)
This week, we're learning about the life and work of a groundbreaking physiologist whose work on learning and instinct is familiar worldwide, and almost universally misunderstood. We'll spend the hour with Daniel Todes, Ph.D, Professor of History of Medicine at The Johns Hopkins University, discussing his book "Ivan Pavlov: A Russian Life in Science."