Nav: Home

New insight into enzyme evolution

March 03, 2016

How enzymes - the biological proteins that act as catalysts and help complex reactions occur - are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.

Professor Vic Arcus (University of Waikato) and colleagues, including Bristol's Professor Adrian Mulholland and Dr Marc van der Kamp, showed that the heat capacity of enzymes changes during a reaction as the enzymes tighten up. Exactly how much the enzymes tighten up is the critical factor in determining the temperature at which they work best. These findings could provide a route to designing better biocatalysts for use in chemical reactions in industrial processes, such as the production of drugs.

Enzymes have an optimum temperature at which they are most catalytically active. Above that temperature, they become less active. Previously, it was thought that this was because enzymes unfolded (lost their functional shape) at higher temperatures, but actually they typically become less active at higher temperatures even though they maintain their functional shape.

So what makes them less active? And what is it that causes enzymes from different organisms to have different catalytic activities at the same temperature? Enzymes from organisms that live at normal temperatures are not very active at low temperatures, while cold-adapted enzymes are active in the cold - why, when they have very similar structures?

The new research, published as a 'New Concept' in Biochemistry (and selected for the American Chemical Society (ACS) Editors' Choice), shows that a basic physical property - the heat capacity - explains and predicts the temperature dependence of enzymes. The heat capacity of a substance is the amount of heat required to raise its temperature by one degree. For enzymes, the heat capacity changes during the reaction and this change is 'tuned' to give the optimal temperature.

Professor Mulholland said: "Our theory - macromolecular rate theory, (MMRT) - applies to all enzymes, and so will have a critical role in predicting metabolic activity as a function of temperature.

"We also expect to see characteristics of MMRT at the level of cells, whole organisms and even ecosystems. This means that it is important in understanding and predicting the response of biological systems to temperature changes, for example, how ecosystems will respond to temperature changes associated with climate change."

The theory also explains why enzymes are so big (the more 'difficult' the chemistry to catalyse, the bigger the enzyme). It also hints at why proteins were eventually preferred by evolution over nucleic acids as catalysts in biology: proteins offer much more ability to 'tune' dynamics and their response to chemical reactions.
-end-
Paper

'On the Temperature Dependence of Enzyme-catalyzed Rates' by Vickery L. Arcus, Erica J. Prentice, Joanne K. Hobbs, Adrian J. Mulholland, Marc W. Van der Kamp, Christopher R. Pudney, Emily J. Parker and Louis A. Schipper in Biochemistry

University of Bristol

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
Proteins that can take the heat
Ancient proteins may offer clues on how to engineer proteins that can withstand the high temperatures required in industrial applications, according to new research published in the Proceedings of the National Academy of Sciences.
Designer proteins fold DNA
Florian Praetorius and Professor Hendrik Dietz of the Technical University of Munich have developed a new method that can be used to construct custom hybrid structures using DNA and proteins.
The proteins that domesticated our genomes
EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human genome.
Rare proteins collapse earlier
Some organisms are able to survive in hot springs, while others can only live at mild temperatures because their proteins aren't able to withstand such extreme heat.
How proteins reshape cell membranes
Small 'bubbles' frequently form on membranes of cells and are taken up into their interior.

Related Proteins Reading:

Proteins: Structure and Function
by David Whitford (Author)

Proteins: Structure and Function is a comprehensive introduction to the study of proteins and their importance to modern biochemistry. Each chapter addresses the structure and function of proteins with a definitive theme designed to enhance student understanding. Opening with a brief historical overview of the subject the book moves on to discuss the ‘building blocks’ of proteins and their respective chemical and physical properties. Later chapters explore experimental and computational methods of comparing proteins, methods of protein purification and protein folding and... View Details


Maria's Low Protein Cook Book
by Maria Depenweiller (Author)

This is a collection of creative low protein recipes with excellent photographs of the dishes for those who must maintain a protein-restricted diet for treatment of PKU or similar inherited diseases of protein metabolism. This book was created by a low protein cooking specialist and a professional home economist with hopes to make reader's lives a bit easier and to share personal culinary experience and expertise. Low protein diets may feel restrictive and full of limitations but with the right ingredients and some basic cooking skills, it is possible to have low protein fine dining at... View Details


Clean Protein: The Revolution that Will Reshape Your Body, Boost Your Energy—and Save Our Planet
by Kathy Freston (Author), Bruce Friedrich (Author)

Join the CLEAN PROTEIN revolution and lose weight, feel stronger, and live longer.

Food and wellness experts Kathy Freston and Bruce Friedrich have spent years researching the future of protein. They've talked to the food pioneers and the nutrition scientists, and now they've distilled what they've learned into a strength-building plan poised to reshape your body and change your world.

Complete with delicious recipes and a detailed guide to food planning, Clean Protein explains everything you need to know in order to get lean, gain energy, and stay mentally sharp.... View Details


The Protein-Packed Breakfast Club: Easy High Protein Recipes with 300 Calories or Less to Help You Lose Weight and Boost Metabolism
by Lauren Harris-Pincus MS RDN (Author)

Whether for weight loss, managing prediabetes or Type II diabetes, or a healthy, fit lifestyle, The Protein-Packed Breakfast Club is filled with delicious, easy to make recipes containing 300 calories or less and packed with a minimum of 20 grams of protein. Power up your morning with protein! You’ll find recipes featuring dairy, protein powders, nuts, seeds, eggs and ancient grains including hot trends like overnight oats, smoothie bowls and mug cakes. Discover healthier versions of classics like pancakes and French toast. Many recipes are also vegetarian and gluten free. In a hurry in the... View Details


Protein Power: The High-Protein/Low Carbohydrate Way to Lose Weight, Feel Fit, and Boost Your Health-in Just Weeks!
by Michael R. Eades (Author), Mary Dan Eades (Author)

New York Times Bestseller - An effective, medically sound diet that lets you eat bacon, eggs, steak, even cheese? It's true!  Lose fat.  Feel fit.  Stop craving.  Without counting fat grams and without giving up the foods you love. Includes recipes for healthy meals to lose weight.

Based on cutting-edge research, this revolutionary and deliciously satisfying plan has already helped thousands of patients lose weight and achieve other lifesaving health benefits, including lower cholesterol and blood pressure readings and an improvement or reversal of common... View Details


Protein Transition: Technological, Economic & Societal Impact of Global Protein Sustainability
by Henk W Hoogenkamp (Author)

Disruptive innovation can be defined as the introduction of new technologies and products -such as generated by cellular biotechnology- that unexpectedly displaces an established technology and often "disrupts" the status quo. By 2050, the global population is predicted to reach 9.8 billion of which more than 8 billion will live in the developing world of today. The expected increase in income per capita will confer increased competition for resources and, subsequently, there will be great need to "produce more and using less". Population growth, climate change, ecosystem degradation, as well... View Details


Plant-Protein Recipes That You’ll Love: Enjoy the goodness and deliciousness of 150+ healthy plant-protein recipes!
by Carina Wolff (Author)

Discover affordable, all-natural plant-based protein recipes that taste good and improve your health in this unique and easy cookbook.

Plant-based proteins are a healthier, more nutritious, and more environmentally friendly alternative to animal protein. But you don’t have to be a vegan or dedicated vegetarian to enjoy the benefits of a plant-based diet. Whether you’re going meatless full time, part time, or only occasionally, you’ll easily find a recipe to power your day.

From hearty breakfasts to satisfying dinners, this cookbook features 150 delicious, budget-friendly,... View Details


Proteins: Concepts in Biochemistry
by Paulo Almeida (Author)

Proteins: Concepts in Biochemistry teaches the biochemical concepts underlying protein structure, evolution, stability, folding, and enzyme kinetics, and explains how interactions in macromolecular structures determine protein function. Intended for a one-semester course in biochemistry or biophysical chemistry with a focus on proteins, this textbook emphasizes the logic underlying biophysical chemical principles.

Problems throughout the book encourage statistical and quantitative thinking. The text is ideal for senior undergraduates, first year graduate students, and... View Details


The High-Protein Vegetarian Cookbook: Hearty Dishes that Even Carnivores Will Love
by Katie Parker (Author), Kristen Smith (Author)

Satisfying vegetarian recipes from Veggie and the Beast

Where do vegetarians get their protein? From delicious plant-based foods, including beans, nuts, quinoa, raw cocoa, and even dairy. These ingredients are used to their best advantage in this new cookbook. As a vegetarian living with a meat-eating guy, the author has developed recipes for every time of day (or night) that are deliciously satisfying and high in protein. With recipes like Fresh Veggie Quinoa Salad with Lemon Tahini Dressing, Mushroom and Wild Rice Burgers, Quick and Hearty Vegetarian Chili,... View Details


The Protein Power Lifeplan
by Michael R. Eades (Author), Mary Dan Eades (Author)

Introduces a lifestyle program that includes motivational advice, recipes, health tips, and nutritional guidelines to assist in treating major health problems, including diabetes, obesity, hypertension, and heart disease View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Peering Deeper Into Space
The past few years have ushered in an explosion of new discoveries about our universe. This hour, TED speakers explore the implications of these advances — and the lingering mysteries of the cosmos. Guests include theoretical physicist Allan Adams, planetary scientist Sara Seager, and astrophysicists Natasha Hurley-Walker and Jedidah Isler.
Now Playing: Science for the People

#461 Adhesives
This week we're discussing glue from two very different times. We speak with Dr. Jianyu Li about his research into a new type of medical adhesive. And Dr. Geeske Langejans explains her work making and investigating Stone Age and Paleolithic glues.