Nav: Home

New research grants awarded to Bath automotive researchers

March 03, 2016

Innovate UK grants have been awarded to the University of Bath to lead two separate projects investigating different aspects of a vehicle's exhaust system in order to improve the efficiency and effectiveness of internal combustion engines.

The research will be conducted by the University's Powertrain & Vehicle Research Centre (PVRC) with both projects being led by Dr Colin Copeland in partnership with industry.

Increasing exhaust gas temperature limits for greater fuel efficiency

The first project, Additive Manufacturing for Cooled High-temperature Automotive Radial Machinery (CHARM), is in collaboration with HiETA Technologies. Dr Copeland and co-investigator Dr Carl Sangan will assess the technical feasibility of producing high temperature radial turbines using the Selective Laser Melting (SLM) Additive Manufacturing (AM) technique with nickel super-alloys.

Currently, the durability of radial turbomachinery is limited when operating in high temperature environments, which restricts the efficiency of gas turbines and internal combustion engines. This project will aim to demonstrate the ability of the SLM AM technique to incorporate cooling features into the turbomachinery to increase exhaust gas temperature limits, and thereby the fuel efficiency of future vehicles.

Water vapour as a resource for heat recovery

The second project, Advanced Inverted Brayton Cycle exhaust heat recovery with Steam Generation, will work with HiETA Technologies and AXES Designs, and focus specifically on internal combustion engines equipped with an Inverted Brayton Bottoming Cycle. This research builds on an existing Innovate UK-funded project investigating how best to recover exhaust heat using an Inverted Brayton Bottoming Cycle.

Currently, a significant amount of energy in vehicles is lost in the form of heat through the exhaust gases expelled into the atmosphere. This project aims to prove the feasibility of using a technique to separate water vapour from the exhaust stream to generate a high energy steam cycle, which can then be used to help reduce the engine's fuel consumption.

'Cutting edge turbomachinery research'

Commenting on the projects, Project lead and Lecturer in the Department of Mechanical Engineering, Dr Copeland said: "These two research projects are at the cutting edge of research in turbomachinery. Additive manufacturing is revolutionising how we control and utilise heat in modern vehicles. These projects investigate two new ways to utilise waste thermal energy to improve the fuel economy in future vehicles."

APC Spoke status

In November 2015, the University of Bath was formally recognised as one of the UK's leading automotive propulsion groups, having been selected as a Spoke of the Advanced Propulsion Centre (APC). The PVRC, which will form the core of the University's work as a Spoke, is one of the leading UK university groups in its field, spanning four decades of achievement and extensive engagement with the automotive industry.

Conducting internationally prize-winning research, focusing on improving the efficiency and emissions of both diesel and petrol engines, the PVRC has a wide range of industrial collaborators and funding bodies including Jaguar Landrover, Ford, EPSRC, First, AshWoods and Lotus, to name just a few.
-end-


University of Bath

Related Fuel Efficiency Articles:

A new method for quantifying crystal semiconductor efficiency
Japanese scientists have found a new way to successfully detect the efficiency of crystal semiconductors.
Improving efficiency, brightness of perovskite LEDs
Advances in organic phosphorescent materials are opening new opportunities for organic light-emitting diodes for combined electronics and light applications, including solar cells, photodiodes, optical fibers and lasers.
New surface treatment could improve refrigeration efficiency
Unlike water, liquid refrigerants and other fluids that have a low surface tension tend to spread quickly into a sheet when they come into contact with a surface.
Magnets can help AI get closer to the efficiency of the human brain
Purdue University researchers have developed a process to use magnetics with brain-like networks to program and teach devices such as personal robots, self-driving cars and drones to better generalize about different objects.
Solving the efficiency of Gram-negative bacteria
Superbugs, also known as Gram-negative bacteria, are causing a global health crisis.
Breeding corn for water-use efficiency may have just gotten easier
With approximately 80 percent of our nation's water supply going towards agriculture, it's fair to say it takes a lot of water to grow crops.
New efficiency record set for perovskite LEDs
Researchers have set a new efficiency record for LEDs based on perovskite semiconductors, rivalling that of the best organic LEDs (OLEDs).
Applying auto industry's fuel-efficiency standards to agriculture could net billions
Adopting benchmarks similar to the fuel-efficiency standards used by the auto industry in the production of fertilizer could yield $5-8 billion in economic benefits for the U.S. corn sector alone, researchers have concluded in a new analysis.
How swarms of nanomachines could improve the efficiency of any machine
The research team of Prof. Massimiliano Esposito of the University of Luxembourg studies the thermodynamics of small nanomachines only consisting of a few atoms.
When irrigation efficiency increases, so does water use
Increased irrigation efficiency does not necessarily lead to reduced agricultural water consumption -- a paradox largely ignored by the public policies that seek to reconcile high water demands amid finite water supply.
More Fuel Efficiency News and Fuel Efficiency Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.