Key brain receptor sheds light on neurological conditions, CU Anschutz researchers say

March 03, 2016

AURORA, Colo. (March 3, 2016) - Researchers at the University of Colorado Anschutz Medical Campus have found that a key receptor in the brain, once thought to only strengthen synapses, can also weaken them, offering new insights into the mechanisms driving depression, drug addiction and even Alzheimer's disease.

Weakening or strengthening a synapse can have major implications both good and bad. Strengthening can sometimes be beneficial in treating Alzheimer's while at the same time causing drug addiction and contributing to Post Traumatic Stress Disorder (PTSD) in other cases.

For years, scientists believed that a special calcium permeable subtype of AMPA-type glutamate receptor only strengthened synapses, which send signals between brain cells. But Professor Mark Dell'Acqua, vice-chair of the Dept. of Pharmacology at the University of Colorado School of Medicine, and his team of researchers found that it also weakened synapses.

"It is a major and unexpected finding," Dell'Acqua said. "If these receptors go to synapses for a short time they can promote weakening of those synapses. But if they stick around longer they can strengthen those synapses. In both cases, that strengthening or weakening can be undesirable if it goes too far in either direction such as in PTSD and drug addiction versus Alzheimer's."

Researcher hope that drugs could be manufactured to strengthen or weaken these synapses, depending on the condition being treated.

"Our study broadens our knowledge of the role these calcium permeable AMPA receptors plays in weakening synapses," Dell'Acqua said. "We are also exploring how these same signaling mechanisms may be relevant to what happens to synapses in Alzheimer's disease. In that case, synapses may be weakened too much."

Dell'Acqua said tracking calcium permeable AMPA receptor activity "is important for understanding basic synaptic processes that underlie normal learning and memory and are altered by diseases impacting brain function."

The discovery, he said, has implications for our understanding of autism, Alzheimer's, epilepsy, Down syndrome, schizophrenia, PTSD and drug addiction. And it offers new avenues to pursue in treating those conditions.

The study was published in the latest edition of the journal Neuron.
-end-
The study co-authors include Jennifer L. Sanderson, PhD, and Jessica A. Gorski, PhD.

University of Colorado Anschutz Medical Campus

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.