Nav: Home

Rapid evolution in mouse genitalia tracked down to small collection of genes

March 03, 2016

Different species of mice tend to look pretty much the same with one significant exception:

The shape and size of mouse bacula -- ­ that is, the bone inside a mouse's penis ­ -- vary wildly. In fact, in some cases, it's the only way to tell different species of mouse apart.

Until now, the genetic basis for that variation has remained a mystery.

"Overall shape of the animal doesn't change nearly as rapidly as that of its genitalia. In fact, for any animal that engages in internal copulation, the evolution of male genitalia is off the charts," said Matt Dean, an evolutionary biologist at the USC Dornsife College of Letters, Arts and Sciences.

Dean and USC graduate student Nicholas Schultz explored the genetic code of 75 distinct strains of mouse and found that just two sites on the mouse genome ­ or "quantitative trait loci (QTL)" ­ control about half of the size variation between bacula. In addition, Dean's team found that a single QTL controls 20 percent of the variation in baculum's shape.

Together, that suggests that only a few genetic tweaks can have an enormous impact on the overall size and shape of the baculum.

A paper announcing their finding was published on March 2 in G3: Genes/Genomes/Genetics, by the Genetics Society of America.

Though studying bacula may seem esoteric, the findings have potential implications for the study of bone development and diseases, as well as how evolution works.

"Bone physiology is important in several human diseases, such as osteoporosis. If we can pin down the genetic basis for that variation, we could better understand the roots of the disease in humans," Dean said. "Also, identifying which genes control the bacula could eventually help us determine whether they offer an evolutionary advantage and why."

Dean and Schultz took 3D micro-CT scans of 369 bacula. Quantitatively comparing the variations in those bacula to the variations in the genomes of the mice, they were able to pin down the genes responsible for the differences in both size and shape.

Previous studies of bacula have been complicated by the difficulty in quantitative comparison. If you have two perfectly straight bones, it's easy to analyze their quantitative difference ­ it's just the difference in their length and width. But with curved or oddly shaped structures, analysis becomes more complicated.

Instead, Dean and Schultz generated digital 3D models that could be manipulated in virtual space, making side-by-side comparisons possible. The technology also underpinned Dean's earlier work that revealed the evolutionary advantage of hipbones in whales.
-end-
Dean and Schultz's collaborators include researchers from USC, the University of Tennessee, Texas A&M, The Jackson Laboratory, and Loyola University in Chicago. Their work was funded by the National Institute of Health, grant #GM098536.

http://dx.doi.org/10.1534/g3.116.027888/

University of Southern California

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".