Nav: Home

Ancient viral invaders in our DNA help fight today's infections

March 03, 2016

(Salt Lake City) - About eight percent of our DNA is viral in origin: remnants of ancient battles between infectious viruses and our ancestors. These so-called endogenous viruses are often perceived as a mere oddity with no clear biological significance. But a new study by scientists at the University of Utah School of Medicine shows that evolution has repurposed some of these viral remains into weapons against its own kind.

Published in Science on March 4, the scientists report that bits of viral DNA embedded in our genome are regulating genes that are integral components of our innate immune system, the first line of defense against pathogens, including viruses. When some of these bits of foreign code are removed experimentally, the defense system becomes crippled.

"We show that some of these endogenous viruses have shaped our biology," says Cédric Feschotte, Ph.D., co-senior author and associate professor of human genetics. "Within mammalian genomes are reservoirs of viral DNA that have fueled innovation of the innate immune system."

The human innate immune system's ability to defeat foreign invaders depends on a well-coordinated response. Upon infection, cells dispatch a silent alarm by releasing interferons, a molecular signal that triggers nearby cells to activate an arsenal of hundreds of genes that fight off intruders. By analyzing publicly available genomic datasets from human cells, the authors discovered thousands of endogenous retroviruses that appeared to be activated by interferons. However, because these retroviruses crash-landed into our genomes many millions of years ago, they have long lost the ability to produce infectious particles. One clue to a potential modern-day function of some of these interferon-inducible elements came from their location in the genome. Instead of being distributed randomly, they were enriched near genes with known functions in immunity.

"These were the first signs to us that some of these elements may be truly involved in switching on immunity genes," says Feschotte who collaborated on the project with assistant professor of human genetics and co-senior author Nels Elde, Ph.D., and lead author Edward Chuong, Ph.D., a Jane Coffin Childs postdoctoral fellow.

To test whether the pieces of viral DNA were indeed important for immunity, the scientists used the gene-editing tool CRISPR/Cas9 in cell culture to remove one by one several of these viral sequences, each located near known immune genes. In mutant cells lacking the foreign code the adjacent immune genes could not turn on properly in response to interferon, demonstrating that they act as virus-derived switches. Further, when cells lacking the viral DNA element near the AIM2 immune defense gene were infected with virus, their ability to execute an effective immune response was greatly reduced. Taken together, the results indicate that ancient viral DNA has become important for mounting a proper defense against today's viral infections.

Because similar virus-derived switches are embedded close to many immune genes, the implication is that together they help coordinate our cellular defenses. "The interferon response is like the alarm system of the cell. We found that some of the most important switches in this system are actually derived from ancient viruses," explains Chuong. The report also finds clues that other endogenous retroviruses may have independently "wired" the interferon responses of other mammals, potentially pointing to a widespread mechanism underlying species-specific immune responses.

"It's likely no accident that innate immune systems reclaimed some of these viral remnants", says Elde. Immune defenses are continually challenged by pathogens that rapidly evolve and change invasion tactics. In order to keep up, evolution simply retooled the genetic material that was previously supplied by viruses.

"Many viruses originally entered our genomes as part of the process of viral replication," says Elde. "The evolutionary process turned the tables to our benefit."
-end-
The research by Edward Chuong, Nels Elde, and Cédric Feschotte will be published as a report titled, "Regulatory evolution of innate immunity through co-option of endogenous retroviruses" in Science on March 4, 2016

The research was supported by the National Institutes of Health (GM082545, GM114514, GM112972, GM059290), the Jane Coffin Childs Memorial Fund, and the Pew Charitable Trusts.

University of Utah Health Sciences

Related Dna Articles:

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.