Nav: Home

Winning the water war starts with winning the battle on data

March 03, 2016

The water meter buried in your front yard isn't exactly the most cutting-edge piece of technology. While they are accurate, most residential water meters are read only once per month, resulting in rough usage data - often rounded to the nearest 1,000 gallons. With the limited data, water utility managers can't distinguish individual uses, such as sprinklers versus toilets, or determine usage by time of day. This limits their ability to spot costly leaks or see opportunities for water conservation. And it gives water users no useful information about how and when they use water.

Quick Read
  • Water resource managers across the U.S. are looking for smarter tools and information products about water supply, demand and forecasting.
  • A USU engineering researcher has received a major NSF grant to develop a new urban water usage cyberinfrastructure.
  • Using 'Smart' water meters and new data analysis tools, it's possible to collect, shrink and transform data into useful information that will help close the gap in our ability to measure and manage urban water use behavior.
  • Smart meters installed at campus dormitories will let residents compete in a Water Wars efficiency competition.
With growing populations in cities and increasing uncertainty about water supply and quality, water resource managers are looking for smarter tools to measure and manage urban water use.

So-called 'smart' meters are one such technology that can capture water use data at high temporal resolution. Smart meters can improve water end-use forecasting and create useful information about demand and supply. And while the new meters show promise, they have failed to achieve widespread adoption in the U.S.

"Replacing existing, analog meters is expensive," said Dr. Jeff Horsburgh, an assistant professor of civil and environmental engineering at Utah State University. "And there is a lack of available cyberinfrastructure for extracting useful information from the large volume of data that smart meters produce."

That's the heart of the problem for Horsburgh: without new data analysis tools, the large volume of data from a smart meter can actually make it harder for utility managers to do their job.

"Until recently, there were no standardized formats or tools to store and analyze water usage figures," he added. "To turn complex water data into useful information, we're developing an integrated research and education plan called Cyberinfrastructure for Intelligent Water Supply."

Horsburgh was selected by the National Science Foundation to receive the prestigious CAREER award grant and will receive $507,000 to help fund this ongoing research. He and his team have developed an inexpensive technology to make existing analog meters smarter. The program will create new tools that collect, shrink and transform high resolution data into useful information products for water managers.

"The ongoing research will significantly close the gap in our ability to quantify and forecast urban water use and behavior," he said.

As part of the study, Horsburgh's team will install smart meters on about 50 homes and inside dormitory buildings on the USU Logan Campus to study patterns in residential water use. With the ability to track water usage in high temporal resolution, Horsburgh's goal is to quantify the timing and distribution of household water use to provide better information for both water users and managers.

On the USU campus, the new meters and data will also allow dorm residents to compete for the title of most water efficient in a friendly campus water wars competition.

In addition to his ongoing research, Horsburgh is part of the leadership team for a statewide study known as iUTAH. The five-year initiative is an NSF-supported program integrating research, training and education, aimed at strengthening science for Utah's water future.
-end-
Media Contacts
Jeff Horsburgh | Utah State University | Dept. of Civil & Environmental Engineering
435-797-2946 | jeff.horsburgh@usu.edu | jeffh.usu.edu

Matt Jensen | Utah State University | College of Engineering
435-797-8170 office | 801-362-0830 cell | matthew.jensen@usu.edu
engineering.usu.edu | @EngineeringUSU

Utah State University

Related Water Supply Articles:

Looming crisis of the much decreased fresh-water supply to Egypt's Nile delta
A multi-year study of Egypt's Nile Delta places the country's major breadbasket at serious risk.
Snow science supporting our nation's water supply
Researchers have completed the first flights of a NASA-led field campaign that is targeting one of the biggest gaps in scientists' understanding of Earth's water resources: snow.
Syracuse University researchers explore link between tropical glaciers, water supply
Syracuse University researchers in the College of Arts and Sciences are closer to understanding how the loss of glaciers in the Cordillera Blanca of Peru is affecting water resources in a region responding to global climate change.
Jumping water striders know how to avoid breaking of the water surface
When escaping from attacking predators, different water strider species adjust their jump performance to their mass and morphology in order to jump off the water as fast and soon as possible without breaking of the water surface.
Water, water -- the two types of liquid water
There are two types of liquid water, according to research carried out by an international scientific collaboration.
Silver nanoparticle concentration too low to be harmful in water supply, paper finds
Silver nanoparticles have a wide array of uses, one of which is to treat drinking water for harmful bacteria and viruses.
Just add water? New MRI technique shows what drinking water does to your appetite, stomach and brain
Stomach MRI images combined with functional fMRI of the brain activity have provided scientists new insight into how the brain listens to the stomach during eating.
Storing extra surface water boosts groundwater supply during droughts
Although years of drought and over-pumping have significantly depleted groundwater in Arizona and California, a new study shows the situation has an upside: It has created underground reservoirs where extra surface water can be stored during wet times so it is available during drought.
UM researchers found shallow-water corals are not related to their deep-water counterparts
A new study led by scientists at the University of Miami Rosenstiel School of Marine and Atmospheric Science found that shallow-reef corals are more closely related to their shallow-water counterparts over a thousand miles away than they are to deep-water corals on the same reef.
Pressure building on global water supply
A new study projects that global demand for water could more than double by 2050, increasing pressure on already scarce water resources.

Related Water Supply Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.