Nav: Home

Group blazes path to efficient, eco-friendly deep-ultraviolet LED

March 03, 2017

The darkest form of ultraviolet light, known as UV-C, is unique because of its reputation as a killer - of harmful organisms.

With wavelengths of between 200 and 280 nanometers, this particular form of UV light penetrates the membranes of viruses, bacteria, mold and dust mites, attacking their DNA and killing them. Sanitization with UV-C light has been around for more than 100 years, following Niels Finsen's discovery of UV light as an antidote to tuberculosis, which won the Faroese-Danish physician the 1903 Nobel Prize for Medicine.

Currently, most deep-UV lamps are mercury-based. They pose a threat to the environment, and are bulky and inefficient. A Cornell research group led by Huili (Grace) Xing and Debdeep Jena, along with collaborators from the University of Notre Dame, has reported progress in creating a smaller, more earth-friendly alternative.

Using atomically controlled thin monolayers of gallium nitride (GaN) and aluminum nitride (AlN) as active regions, the group has shown the ability to produce deep-UV emission with a light-emitting diode (LED) between 232 and 270 nanometer wavelengths. Their 232- nanometer emission represents the shortest recorded wavelength using GaN as the light-emitting material. The previous record was 239 nanometers, by a group in Japan.

"MBE-grown 232-270 nm deep-UV LEDs using monolayer thin binary GaN/AlN quantum heterostructures" was published online Jan. 27 in Applied Physics Letters.

Postdoctoral researcher SM (Moudud) Islam, the lead author, said: "UV-C light is very attractive because it can destroy the DNA of species that cause infectious diseases, which cause contamination of water and air."

One of the major challenges with ultraviolet LEDs is efficiency, which is measured in three areas: injection efficiency - the proportion of electrons passing through the device that are injected into the active region; internal quantum efficiency (IQE) - the proportion of all electrons in the active region that produce photons or UV light; and light extraction efficiency - the proportion of photons generated in the active region that can be extracted from the device and are actually useful.

"If you have 50 percent efficiency in all three components ... multiply all of these and you get one-eighth," Islam said. "You're already down to 12 percent efficiency."

In the deep-UV range, all three efficiency factors suffer, but this group found that by using gallium nitride instead of conventional aluminum gallium nitride, both IQE and light extraction efficiency are enhanced.

Injection efficiency is improved through the use of a polarization-induced doping scheme for both the negative (electron) and positive (hole) carrier regions, a technique the group explored in previous work.

Now that the group has proven its concept of enhanced deep-UV LED efficiency, its next task is packaging it in a device that could one day go on the market. Deep-UV LEDs are used in food preservation and counterfeit currency detection, among other things.

Further study will include packaging both the new technology and existing technologies in otherwise similar devices, for the purpose of comparison.

"In terms of quantifying the efficiency, we do want to package it within the next few months and test it as if it was a product, and try to benchmark it against a product with one of the available technologies," Jena said.
-end-
Other Cornell collaborators included research associate Vladimir Protasenko and electrical and computer engineering doctoral students Kevin Lee and Shyam Bharadwaj.

The work was supported by grants from the National Science Foundation and the Air Force Office of Scientific Research.

Cornell University

Related Electrons Articles:

Deceleration of runaway electrons paves the way for fusion power
Fusion power has the potential to provide clean and safe energy that is free from carbon dioxide emissions.
Shining light on low-energy electrons
The classic method for studying how electrons interact with matter is by analyzing their scattering through thin layers of a known substance.
Ultrafast nanophotonics: Turmoil in sluggish electrons' existence
An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time.
NASA mission uncovers a dance of electrons in space
NASA's MMS mission studies how electrons spiral and dive around the planet in a complex dance dictated by the magnetic and electric fields, and a new study revealed a bizarre new type of motion exhibited by these electrons.
'Hot' electrons don't mind the gap
Rice University scientists discover that 'hot' electrons can create a photovoltage about a thousand times larger than ordinary temperature differences in nanoscale gaps in gold wires.
Electrons used to control ultrashort laser pulses
We may soon get better insight into the microcosm and the world of electrons.
Supercool electrons
Study of electron movement on helium may impact the future of quantum computing.
Two electrons go on a quantum walk and end up in a qudit
There is a variety of physical systems that can be used to implement a separate quantum bit, but significantly less research has been done into systems of several qubits or qudits.
Radiation that knocks electrons out and down, one after another
Researchers at Japan's Tohoku University are investigating novel ways by which electrons are knocked out of matter.
Controlling electrons in time and space
A new method has been developed to control electrons being emitted from metal tips.

Related Electrons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...