Nav: Home

Reprogrammed blood vessels promote cancer spread

March 03, 2017

Blood vessels play a critical role in the growth and spread of cancer. The cells lining the inner wall of blood vessels (endothelial cells) and cancer cells are in close contact to each other and mutually influence each other. Andreas Fischer and his colleagues are studying these interactions. Fischer, a medical researcher, leads a Helmholtz University Junior Research Group at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) and the Medical Faculty Mannheim of Heidelberg University.

Fischer and his team had found surprisingly high levels of the activated form of a signaling molecule called Notch in blood vessels of tumors. In vessel lining cells from lung, breast and bowel tumors, they found significantly higher levels of the activated receptor than they did in the healthy organs. The researchers observed that the higher the levels of Notch activation were in the tumor endothelium, the more the cancer had already spread and the poorer was the prognosis for the patients.

Activation of the receptor protein Notch by its binding partners is a key communication pathway for signal exchange between neighboring cells. Starting from nematodes over insects through to man, Notch regulates the development of organs during embryonic development. In adults, the signaling protein regulates, among other things, the activity of blood stem cells.

A couple of years ago, cancer researchers were already able to show that aberrant Notch signaling can turn cells cancerous, for example, white blood cells into leukemia cells. In the present study, Fischer and colleagues have now demonstrated for the first time that the Notch activity of cells in the tumor microenvironment also has an influence on cancer.

Fischer and his co-workers have demonstrated in mice that the tumor cells themselves are responsible for Notch activation in immediate contact with endothelial cells. They reprogram the vascular wall cells for their own purposes, thus apparently paving the way for their spread in the body. The more activated Notch is in the tumor endothelium, the more cancer cells make their way into the bloodstream and the more lung metastases form.

Surprisingly, Notch activation in tumor-bearing mice was not restricted to the blood vessels in the tumor; it also affected the endothelial cells in the lung. The tumor appears to release signaling substances that prepare the soil for colonization by its metastases.

As a result of Notch activation, endothelial cells increase their production of a contact molecule called VCAM1. This protein acts like a snap fastener that enables the cancer cells to attach to the vessel wall and prepare the passage. In addition, activated Notch makes it easier for cancer cells to get into the bloodstream by making certain structures with sealing function between endothelial cells more permeable. Finally, activated Notch also causes the endothelial cells to produce chemical messengers that recruit tumor-promoting immune cells into the tumor.

"Taken together, the results show a very clear picture: The tumor cells promote their spread in the body in multiple ways by activating Notch and thus reprogramming endothelial cells for their own purposes," Fischer summed up. "We therefore wanted to find out if we could interrupt this disastrous mechanism."

The scientists blocked Notch in mice using an antibody that is currently being tested in early preclinical trials and thus were able reduce the colonization of the lung by cancer cells. A blockade of the contact molecule VCAM1 with an antibody also resulted in less metastases in the lung and lowered the invasion of the tumor by cancer-promoting immune cells.

"Notch is a universal signaling molecule and this makes it difficult to exert therapeutic influence on it without interfering with vital processes," Fischer said. "But a targeted short-time use of blocking antibodies might be a promising approach for suppressing the dangerous spread of tumors. This is what we aim to explore in our further research."
-end-
Elfriede Wieland, Juan Rodriguez-Vita, Sven S. Liebler, Carolin Mogler, Iris Moll, Stefanie E. Herberich, Elisa Espinet, Esther Herpel, Amitai Menuchin, Jenny Chang-Claude, Michael Hoffmeister, Christoffer Gebhardt, Hermann Brenner, Andreas Trumpp, Christian W. Siebel, Markus Hecker, Jochen Utikal, David Sprinzak, Andreas Fischer: Endothelial Notch1 activity facilitates metastasis. Cancer Cell 2017, DOI: http://dx.doi.org/10.1016/j.ccell.2017.01.007

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 3,000 employees is the largest biomedical research institute in Germany. At DKFZ, more than 1,000 scientists investigate how cancer develops, identify cancer risk factors and endeavor to find new strategies to prevent people from getting cancer. They develop novel approaches to make tumor diagnosis more precise and treatment of cancer patients more successful. The staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. Jointly with Heidelberg University Hospital, DKFZ has established the National Center for Tumor Diseases (NCT) Heidelberg, where promising approaches from cancer research are translated into the clinic. In the German Consortium for Translational Cancer Research (DKTK), one of six German Centers for Health Research, DKFZ maintains translational centers at seven university partnering sites. Combining excellent university hospitals with high-profile research at a Helmholtz Center is an important contribution to improving the chances of cancer patients. DKFZ is a member of the Helmholtz Association of National Research Centers, with ninety percent of its funding coming from the German Federal Ministry of Education and Research and the remaining ten percent from the State of Baden-Württemberg.

German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ)

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".