Researchers remotely control sequence in which 2-D sheets fold into 3-D structures

March 03, 2017

Inspired by origami, North Carolina State University researchers have found a way to remotely control the order in which a two-dimensional (2-D) sheet folds itself into a three-dimensional (3-D) structure.

"A longstanding challenge in the field has been finding a way to control the sequence in which a 2-D sheet will fold itself into a 3-D object," says Michael Dickey, a professor of chemical and biomolecular engineering at NC State and co-corresponding author of a paper describing the work. "And as anyone who has done origami - or folded their laundry -- can tell you, the order in which you make the folds can be extremely important."

"The sequence of folding is important in life as well as in technology," says co-corresponding author Jan Genzer, the S. Frank and Doris Culberson Distinguished Professor of Chemical and Biomolecular Engineering at NC State. "On small length scales, sequential folding via molecular machinery enables DNA to pack efficiently into chromosomes and assists proteins to adopt a functional conformation. On large length scales, sequential folding via motors helps solar panels in satellites and space shuttles unfold in space. The advance of the current work is to induce materials to fold sequentially using only light."

Specifically, the researchers have developed a technique to design and fabricate 2-D materials that can be controlled remotely in order to trigger any of the given folds to take place, in any order.

Dickey and Genzer were early leaders in the field of self-folding 3-D structures. In their landmark 2011 paper, the researchers outlined a technique in which a pre-stressed plastic sheet was run through a conventional inkjet printer to print bold black lines on the material. The material was then cut into a desired pattern and placed under an infrared light, such as a heat lamp.

The printed lines absorbed more energy than the rest of the material, causing the plastic to contract -- creating a hinge that folded the sheets into 3-D shapes. By varying the width of the printed lines, or hinges, the researchers were able to change how far -- and how quickly -- each hinge folds. The technique is compatible with commercial printing techniques, such as screen printing, roll-to-roll printing, and inkjet printing, that are inexpensive and high-throughput but inherently 2-D.

The new advance uses essentially the same technique, but takes advantage of the fact that different colors of ink absorb different wavelengths, or colors, of light.

"By printing the hinges in different colors, we can control the order of the folds by altering the wavelengths of light that shines on the 2-D sheet," Genzer says.

For example, if one hinge is printed in yellow and another hinge is printed in blue, the researchers can make the yellow hinge fold by exposing it to blue light. The blue hinge won't fold, because blue ink doesn't absorb blue light. The researchers can then make the blue hinge fold by exposing the sheet to red light.

In addition, by manipulating the colors of ink, the researchers were also able to get hinges to fold sequentially when exposed to a single wavelength of light. This is possible because some colors will absorb a given wavelength of light more efficiently than others. [Note: a video of the sequential folding techniques in action can be seen at https://youtu.be/ZlZOdiwbZIE. The video, like the paper, is under embargo until 2 p.m. EST on March 3.]

"This is a proof-of-concept paper, but it opens the door to a range of potential applications using a simple and inexpensive process," Dickey says.

"Ultimately, people are interested in self-assembling structures for multiple reasons, from shipping things in a flat package and having them assemble on site to having devices self-assemble in 'clean' environments for medical or electronic applications."
-end-
The paper, "Sequential Self-folding of Polymer Sheets," is published in the AAAS journal Science Advances. Lead author of the paper is Ying Liu, a postdoctoral researcher at NC State. The paper was co-authored by Brandi Shaw, who participated in the work while an undergraduate at NC State. The work was done with support from EFRI program through the National Science Foundation, under grant number 1240438.

North Carolina State University

Related Biomolecular Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Deep-sea osmolyte makes biomolecular machines heat-tolerant
Researchers have discovered a method to control biomolecular machines over a wide temperature range using deep-sea osmolyte trimethylamine N-oxide (TMAO).

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Biomolecular analyses of Roopkund skeletons show Mediterranean migrants in Indian Himalaya
A large-scale study conducted by an international team of scientists has revealed that the mysterious skeletons of Roopkund Lake -- once thought to have died during a single catastrophic event - belong to genetically highly distinct groups that died in multiple periods in at least two episodes separated by one thousand years.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Nanotubes built from protein crystals: Breakthrough in biomolecular engineering
Researchers at Tokyo Tech have succeeded in constructing protein nanotubes from tiny scaffolds made by cross-linking of engineered protein crystals.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Biomolecular Engineering News and Biomolecular Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.