Nav: Home

Boosting the lifetime and effectiveness of biomedical devices

March 03, 2017

Modern electronic biomedical devices are enabling a wide range of sophisticated health interventions, from seizure detection and Parkinson's disease therapy to functional artificial limbs, cochlear implants, and smart contact lenses.

An effective direct interfacing material is essential to communication between these devices and neural tissue, which includes nerves and the brain.

In recent years, a conjugated polymer known as PEDOT -- widely used in applications such as energy conversion and storage, organic light-emitting diodes, electrochemical transistors, and sensing -- has been investigated for its potential to serve as this interface.

In some cases, however, the low mechanical stability and relatively limited adhesion of conjugated polymers like PEDOT -- short for poly (3,4-ethylene dioxythiophene) -- on solid substrates can limit the lifetime and performance of these devices. Mechanical failure might also leave behind undesirable residue in the tissue.

Now, a research team led by the University of Delaware's David Martin has reported the development of an electrografting approach to significantly enhance PEDOT adhesion on solid substrates. The breakthrough is documented in a paper published in Science Advances on March 3.

Martin, the Karl W. and Renate Böer Professor of Materials Science and Engineering, explains that the term electrografting describes a process in which organic molecules are electrochemically oxidized or reduced, followed by the formation of metal-organic bonds at the substrate-polymer interface.

Compared to other methods, surface modification through electro-grafting takes just minutes. Another advantage is that a variety of materials can be used as the conducting substrate, including gold, platinum, glassy carbon, stainless steel, nickel, silicon, and metal oxides.

The actual chemistry usually takes multiple steps, but Martin and his team have developed a simple, two-step approach for creating PEDOT films that strongly bond with metal and metal oxide substrates, yet remain electrically active.

"Our results suggest that this is an effective means to selectively modify microelectrodes with highly adherent and highly conductive polymer coatings as direct neural interfaces," Martin says.
-end-


University of Delaware

Related Neural Tissue Articles:

Method elucidates inner workings of neural networks
A new technique helps elucidate the inner workings of neural networks trained on visual data.
Stretching the boundaries of neural implants
New nanowire-coated, stretchy, multifunction fibers can be used to stimulate and monitor the spinal cord while subjects are in motion, MIT researchers report.
Neural networks promise sharpest ever images
Telescopes, the workhorse instruments of astronomy, are limited by the size of the mirror or lens they use.
Artificial synapse for neural networks
A new organic artificial synapse made by Stanford researchers could support computers that better recreate the way the human brain processes information.
Neural stem cells serve as RNA highways too
Duke scientists have caught the first glimpse of molecules shuttling along a sort of highway running the length of neural stem cells, which are crucial to the development of new neurons.
Neurobiology: Epigenetics and neural cell death
Researchers from Ludwig-Maximilians-Universitaet (LMU) in Munich have demonstrated how deregulation of an epigenetic mechanism that is active only in the early phases of neurogenesis triggers the subsequent death of neural cells.
Neural stem cells control their own fate
To date, it has been assumed that the differentiation of stem cells depends on the environment they are embedded in.
Here's how deep learning neural networks are designed
World Scientific's latest book 'Deep Learning Neural Networks: Design and Case Studies' shows how DLNN can be a powerful computational tool for solving prediction, diagnosis, detection and decision problems based on a well-defined computational architecture.
Neural networks to obtain synthetic petroleum
The UPV/EHU's Catalytic Processes for Waste Valorisation research group is working on various lines of research relating to renewable energies, one of which corresponds to the obtaining of bio-oils or synthetic petroleum using biomass.
Neural connections mapped with unprecedented detail
A team of neuroscientists at the Champalimaud Centre for the Unknown, in Lisbon, has been able to map single neural connections over long distances in the brain.

Related Neural Tissue Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#517 Life in Plastic, Not Fantastic
Our modern lives run on plastic. It's in the computers and phones we use. It's in our clothing, it wraps our food. It surrounds us every day, and when we throw it out, it's devastating for the environment. This week we air a live show we recorded at the 2019 Advancement of Science meeting in Washington, D.C., where Bethany Brookshire sat down with three plastics researchers - Christina Simkanin, Chelsea Rochman, and Jennifer Provencher - and a live audience to discuss plastics in our oceans. Where they are, where they are going, and what they carry with them. Related links:...