Nav: Home

How low can you go? New project to bring satellites nearer to Earth

March 03, 2017

The University of Manchester is leading a multi-million pound project to develop satellites which will orbit much closer to the Earth - making them smaller, cheaper, helping to dodge space debris and improving the quality of images they can send back.

Remote sensing satellites currently operate at about 500-800km above the Earth, above the residual atmosphere that exists at lower altitudes. But this means that observations of the ground must also take place over this range, either limiting resolution or requiring large telescopes to be used.

The €5.7m grant from the European Union's Horizon 2020 fund will allow the research team to design new technologies to build satellites that can operate at 200-450 km above the Earth's surface - lower than the International Space Station.

Dr Peter Roberts, Scientific Coordinator for the project, said: "Remote sensing satellites are widely used to obtain imagery for environmental and for security uses such as agricultural land management, maritime surveillance and disaster management."

"If we are able to get satellites closer to Earth then we can get the same data using smaller telescopes, or smaller and less powerful radar systems, all of which reduces the satellite mass and cost. But there are also many technical challenges which until now have been too great to overcome. This research tackles the problem on a number of fronts."

One issue is that the atmosphere is denser the nearer to Earth that satellites get. This means that drag needs to be minimised and countered. To do this, the team will develop advanced materials and test them in a new 'wind tunnel' which mimics the composition, density and speed of the atmosphere as seen by a satellite at these altitudes. This will allow the team to test how materials interact with individual atoms of oxygen and other elements in the atmosphere at speeds of up to 8km per second. The ultimate aim is to be able to use these materials to streamline the satellites.

They will also test the materials on a real satellite launched into these lower orbits. The satellite will also demonstrate how the atmospheric flow can be used to control the orientation of the satellite, much like an aircraft does at lower altitudes.

In addition, the team will develop experimental electric propulsion systems which use the residual atmosphere as propellant. This approach has the potential to keep the satellites in orbit indefinitely despite the drag acting upon them. However, it also means that the satellites will re-enter quickly when they've reached the end of their mission avoiding the space debris problems experienced at higher altitudes.

All these technological developments will be worked into new engineering and business models identifying what future very low Earth orbit remote sensing satellites would look like and how they would operate. The project will also map out the path for future exploitation of the developed concepts.

Partners in the research are The University of Manchester, Elecnor Deimos Satellite Systems, GomSpace AS, University of Stuttgart, Universitat Politecnica de Catalunya, University College London, The TechToybox, EuroConsult and concentris research management. The project is scheduled to run for 51 months from January 2017.
-end-


University of Manchester

Related Atmosphere Articles:

Primitive atmosphere discovered around 'Warm Neptune'
A pioneering new study uncovering the 'primitive atmosphere' surrounding a distant world could provide a pivotal breakthrough in the search to how planets form and develop in far-flung galaxies.
NASA's MAVEN reveals Mars has metal in its atmosphere
Mars has electrically charged metal atoms (ions) high in its atmosphere, according to new results from NASA's MAVEN spacecraft.
Northern oceans pumped CO2 into the atmosphere
The Norwegian Sea acted as CO2 source in the past.
Study opens new questions on how the atmosphere and oceans formed
A new study led by The Australian National University has found seawater cycles throughout the Earth's interior down to 2,900km, much deeper than previously thought, reopening questions about how the atmosphere and oceans formed.
How a moon slows the decay of Pluto's atmosphere
A new study from the Georgia Institute of Technology provides additional insight into relationship between Pluto and its moon, Charon, and how it affects the continuous stripping of Pluto's atmosphere by solar wind.
Fossil fuel formation: Key to atmosphere's oxygen?
For the development of animals, nothing -- with the exception of DNA -- may be more important than oxygen in the atmosphere.
Researchers dial in to 'thermostat' in Earth's upper atmosphere
A team led by the University of Colorado Boulder has found the mechanism behind the sudden onset of a 'natural thermostat' in Earth's upper atmosphere that dramatically cools the air after it has been heated by violent solar activity.
New biochar model scrubs CO2 from the atmosphere
New Cornell University research suggests an economically viable model to scrub carbon dioxide from the atmosphere to thwart global warming.
Venus-like exoplanet might have oxygen atmosphere, but not life
The distant planet GJ 1132b intrigued astronomers when it was discovered last year.
Middle atmosphere in sync with the ocean
In the late 20th century scientists observed a cooling at the transition between the troposphere and stratosphere at an altitude of about 15 kilometers.

Related Atmosphere Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".