Plasma-driven biocatalysis

March 03, 2020

Compared with traditional chemical methods, enzyme catalysis has numerous advantages. But it also has weaknesses. Some enzymes are not very stable. Enzymes that convert hydrogen peroxide are even inactivated by high concentrations of the substrate. A research team at Ruhr-Universität Bochum (RUB), together with international partners, has developed a process in which the starting material, i.e. hydrogen peroxide, is fed to the biocatalysts in a controlled manner using plasma. The enzymes themselves are protected from harmful components of the plasma by a buffer layer. Using two model enzymes, the team showed that the process works, as reported in the journal "ChemSusChem" from 5 February 2020.

Milder conditions, less energy consumption and waste

In biocatalysis, chemicals are produced by cells or their components, in particular by enzymes. Biocatalysis has many advantages over traditional chemical processes: the reaction conditions are usually much milder, energy consumption is lower and less toxic waste is produced. The high specificity of enzymes also means that fewer side reactions occur. Moreover, some fine chemicals can only be synthesised by biocatalysis.

The weak spot of enzyme biocatalysis is the low stability of some enzymes. "Since the enzyme often has to be replaced in such cases - which is expensive - it is extremely important to increase the stability under production conditions," explains lead author Abdulkadir Yayci from the Chair of Applied Microbiology headed by Professor Julia Bandow.

Hydrogen peroxide: necessary, but harmful

The research team has been studying two similar classes of enzymes: peroxidases and peroxygenases. Both use hydrogen peroxide as a starting material for oxidations. The crucial problem is that hydrogen peroxide is absolutely necessary for activity, but in higher concentrations it leads to a loss of activity of the enzymes. As far as these enzyme classes are concerned, it is therefore vital to supply hydrogen peroxide in precise doses.

To this end, the researchers investigated plasmas as a source of hydrogen peroxide. Plasma describes the fourth state of matter that is created when energy is added to a gas. If liquids are treated with plasmas, a large number of reactive oxygen and nitrogen species are formed, some of which then react to form long-lived hydrogen peroxide, which can be used for biocatalysis.

Biocatalytic reactions with plasma-generated hydrogen peroxide are possible

In an experiment in which horseradish peroxidase served as one of the model enzymes, the team showed that this system works in principle. At the same time, the researchers identified the weak points of plasma treatment: "Plasma treatment also directly attacks and inactivates the enzymes, most likely through the highly reactive, short-lived species in the plasma-treated liquid," outlines Abdulkadir Yayci. The research group improved the reaction conditions by binding the enzyme to an inert carrier material. This creates a buffer zone above the enzyme in which the highly reactive plasma species can react without harming the enzyme.

The researchers then tested their approach using a second enzyme, the unspecific peroxygenase from the fungus Agrocybe aegerita. This peroxygenase has the ability to oxidise a large number of substrates in a highly selective way. "We successfully demonstrated that this specificity is maintained even under plasma treatment and that highly selective biocatalytic reactions are possible using plasma," concludes Julia Bandow.

The research was funded by the German Research Foundation (DFG) within the Collaborative Research Centre Transient Atmospheric Plasmas (SFB 1316) and benefited directly from studies of bacterial protection mechanisms in the context of a DFG research grant (BA 4193/7-1).

Original publication

Abdulkadir Yayci, Álvaro Gómez Baraibar, Marco Krewing, Elena Fernandez Fueyo, Frank Hollmann, Miguel Alcalde, Robert Kourist, Julia Elisabeth Bandow: Plasma-driven in situ production of hydrogen peroxide for biocatalysis, in: ChemSusChem, 2020, DOI: 10.1002/cssc.201903438

Press contact

Prof. Dr. Julia Bandow
Chair of Applied Microbiology
Faculty of Biology and Biotechnology
Ruhr-Universität Bochum
Phone: +49 234 32 23102

Ruhr-University Bochum

Related Enzymes Articles from Brightsurf:

Bacilli and their enzymes show prospects for several applications
This publication is devoted to the des­cription of different microbial enzymes with prospects for practical application.

Ancient enzymes can contribute to greener chemistry
A research team at Uppsala University has resurrected several billion-year-old enzymes and reprogrammed them to catalyse completely different chemical reactions than their modern versions can manage.

Advances in the production of minor ginsenosides using microorganisms and their enzymes
Advances in the Production of Minor Ginsenosides Using Microorganisms and Their Enzymes - BIO Integration Announcing a new article publication for BIO Integration journal.

Cold-adapted enzymes can transform at room temperature
Enzymes from cold-loving organisms that live at low temperatures, close to the freezing point of water, display highly distinctive properties.

How enzymes build sugar trees
Researchers have used cryo-electron microscopy to elucidate for the first time the structure and function of a very small enzyme embedded in cell membranes.

Energized by enzymes -- nature's catalysts
Scientists at Pacific Northwest National Laboratory are using a custom virtual reality app to design an artificial enzyme that converts carbon dioxide to formate, a kind of fuel.

Mathematical model reveals behavior of cellular enzymes
Mathematical modeling helps researchers to understand how enzymes in the body work to ensure normal functioning.

While promoting diseases like cancer, these enzymes also cannibalize each other
In diseases like cancer, atherosclerosis, and sickle cell anemia, cathepsins promote their propagation.

Researchers finally grasp the work week of enzymes
Scientists have found a novel way of monitoring individual enzymes as they chomp through fat.

How oxygen destroys the core of important enzymes
Certain enzymes, such as hydrogen-producing hydrogenases, are unstable in the presence of oxygen.

Read More: Enzymes News and Enzymes Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to