Nav: Home

Study suggests blocking immune T-cell regulator may help eliminate tumours

March 03, 2020

Immune system T-cells are more able to destroy skin cancer cells when a T-cell regulator called SLAMF6 is missing, a new study in eLife shows.

Immunotherapies, which boost the immune system's ability to destroy cancer cells, have become an important type of cancer treatment, but they are only successful for about half of patients treated with them. The new study in mice suggests that immunotherapies that turn off SLAMF6 might add an option that could be used alone or in combination with other immunotherapies to treat cancer more effectively.

"There is a real need to find new targets for immunotherapies," says lead author Emma Hajaj, an MD-PhD candidate at the Sharett Institute of Oncology at Hadassah Hebrew University Hospital, Jerusalem, Israel. "We thought that SLAMF6, which is a receptor found on all T-cells, was a good candidate for immunotherapy, but more thorough research was needed to confirm this."

To investigate this further, Hajaj and her colleagues created a mouse model that enabled the team to understand the role of SLAMF6 in melanoma treatment. They found that tumours in mice treated with SLAMF6-lacking T-cells shrunk faster and stayed smaller than tumours in mice treated with typical T-cells.

Additionally, they saw that the expression of a gene called LAG-3 increased in the SLAMF6-lacking cells, possibly to make up for the loss of the regulator. Combining SLAMF6-lacking T-cells with an antibody that blocks LAG-3 also increased their tumour-shrinking effect.

"The results from our study show that the absence of SLAMF6 unleashes powerful anti-tumour T-cells, which extended survival in our mouse model," explains senior author Michal Lotem, Head of the Center for Melanoma and Cancer Immunotherapy at Hadassah Hebrew University Hospital. "These findings may have important implications for cancer immunotherapy and could lead to the development of new melanoma treatments that turn off SLAMF6."

The paper 'SLAMF6 deficiency augments tumor killing and skews towards an effector phenotype revealing it as a novel T cell checkpoint' can be freely accessed online at Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

This study will be included in eLife's upcoming Special Issue: 'Discovery and Translation of Cancer Immunology'. To be alerted as new papers are published, follow #eLifeCancerImmunology on Twitter.

Media contact

Emily Packer, Senior Press Officer
01223 855373

About eLife

eLife is a non-profit organisation inspired by research funders and led by scientists. Our mission is to help scientists accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours in science. We publish important research in all areas of the life and biomedical sciences, including Human Biology and Medicine, and Immunology and Inflammation, which is selected and evaluated by working scientists and made freely available online without delay. eLife also invests in innovation through open-source tool development to accelerate research communication and discovery. Our work is guided by the communities we serve. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, the Wellcome Trust and the Knut and Alice Wallenberg Foundation. Learn more at

To read the latest Human Biology and Medicine research published in eLife, see

And for the latest in Immunology and Inflammation, see


Dr. Miriam and Sheldon G Adelson Medical Research Foundation, Fred Lovejoy Resident Research Fund Awards, International Development Research Centre, Canadian Institutes of Health Research, Melanoma Research Alliance, Israel Science Foundation, Azrieli Foundation, Deutsche Forschungsgemeinschaft, Rosetrees Trust, Perlstein family fund


Related Immune System Articles:

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at