Hope for a new permanent magnet that's cheap and sustainable

March 03, 2020

Scientists have made a breakthrough in the search for a new, sustainable permanent magnet.

Most permanent magnets are made from alloys of rare earth metals - but the mining and processing of these materials produces toxic by-products, leading to ecological challenges around rare-earth mines and refineries. At the same time, demand for permanent magnets is increasing as they are a common component in renewable energy, consumer electronics and electric-powered vehicles.

A team of scientists, led by the University of Leeds, has made a breakthrough in a new advanced material which may eventually replace rare-earth-based permanent magnets. The researchers have developed a hybrid film from a thin layer of cobalt, which is naturally magnetic, covered with molecules of Buckminsterfullerene, a form of carbon.

The presence of the carbon dramatically boosted cobalt's magnetic energy product, a measure of the strength of a magnet, by five times at low temperatures.

The findings have been published in Physical Review B, produced by the American Physical Society. Available at: https://journals.aps.org/prb/pdf/10.1103/PhysRevB.101.060408

The research team observed the increase in magnetic strength at minus 195 degrees Centigrade, but they hope by chemically manipulating the carbon molecules, they will be able to get the same effect at room temperature.

Dr Tim Moorsom, co-principal investigator from the School of Physics and Astronomy at Leeds, said: "This is the first indication I have seen that a rare-earth-free magnet could compare to something like samarium cobalt, a rare-earth-based permanent magnet.

"While we have only seen this effect at low temperatures thus far, I am hopeful that a hybrid magnetic material similar to this will one day replace rare earth permanent magnets, helping to mitigate the environmental damage they cause."

Although carbon is not magnetic, the way the molecules bond to the cobalt surface causes a magnetic pinning effect, which prevents the magnetism in the cobalt from changing direction, even in strong opposing fields. This surface interaction is the key to the unusually high magnetic energy of the hybrid material.

While it may be a long time before hybrid magnets are ready to be used in wind turbines or electric cars, there are other applications which are closer at hand.

Dr Oscar Cespedes, co-principal investigator, who is also at Leeds, said "Although room temperature applications in bulk permanent magnetism may be a long way off, the use of molecular coupling to tune the magnetic properties of thin films, for example in magnetic memories, is a tantalising prospect that is within easy reach."
The research was funded by the Engineering and Physical Sciences Research Council, Horizon 2020 European Research Infrastructure project OpenDreamKit, Taibah University and the Science and Technology Facilities Council.

Notes to Editors

For more information, please contact David Lewis in the press office at the University of Leeds: d.lewis@leeds.ac.uk or 0113 343 2049

University of Leeds

The University of Leeds is one of the largest higher education institutions in the UK, with more than 38,000 students from more than 150 different countries, and a member of the Russell Group of research-intensive universities. The University plays a significant role in the Turing, Rosalind Franklin and Royce Institutes.

We are a top ten university for research and impact power in the UK, according to the 2014 Research Excellence Framework, and are in the top 100 of the QS World University Rankings 2020.

The University was awarded a Gold rating by the Government's Teaching Excellence Framework in 2017, recognising its 'consistently outstanding' teaching and learning provision. Twenty-six of our academics have been awarded National Teaching Fellowships - more than any other institution in England, Northern Ireland and Wales - reflecting the excellence of our teaching. http://www.leeds.ac.uk

Follow University of Leeds or tag us in to coverage: Twitter Facebook LinkedIn Instagram

University of Leeds

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.