'T-ray' devices with perfect imaging abilities move a step closer

March 04, 2004

A team of American and British scientists has demonstrated an artificially made material that can provide a magnetic response to Terahertz frequency radiation, bringing the realisation and development of novel 'T-ray' devices a step closer.

The advance, reported in the journal Science today (5 March), suggests many applications in biological and security imaging, biomolecular fingerprinting, remote sensing and guidance in zero visibility weather conditions, say the authors.

Theorist John Pendry of Imperial College London, also co- author of the paper, hailed the making of the material as a feat of technological virtuosity, and looked forward to some incredible applications.

"This was terra incognita, but we just pushed on to higher frequencies," said Professor Pendry. "This is the first material to show a Terahertz frequency magnetic response; it's the proof of concept experiment. We've shown we can do it, and that sends a powerful message out to the community of researchers."

Terahertz frequencies sit in a largely unexplored region of the electromagnetic spectrum between infra-red and microwaves, known as far infra-red radiation. The frequency of a terahertz is 1 trillion cycles per second and Terahertz radiation has a wavelength between 0.1 and 1 millimetre. It is thought to be safe, as it is non-ionising and does not have DNA-damaging effects.

The authors from the University of California Los Angeles, University of California San Diego and Imperial College London, are collectively looking to build materials that respond magnetically to THz, infra-red, and visible radiation as there is an almost total absence of naturally occurring materials with magnetic responses to these frequencies.

Their quest to build such artificial materials, or metamaterials, is motivated by their desire to explore a strange and intriguing property, named 'negative refractive index', which is found only in this new class of materials.

Conventional optical devices are limited in resolution by the wavelength of radiation employed (eg light or X-rays), but in a series of papers building on forgotten work by Russian physicist Victor Veselago from 1968, Professor Pendry in 2000* predicted the existence of devices capable of focusing features smaller than the wavelength of light.

Referred to as 'perfect lenses', these revolutionary lenses break the wavelength barrier and achieve resolution limited only by the quality of the materials from which they are constructed.

Perfect lenses rely on a phenomenon theorised by Veselago who made a theoretical investigation of novel electromagnetic materials in which the normal response to both electric and magnetic fields is reversed. He referred to these materials as 'left handed' because the inverted response reverses the energy flow associated with a ray of light.

Amongst many strange properties of left handed materials, he found that when light is refracted from air into a left handed medium, it bends the opposite way to light entering a normal medium such as water or glass, making a chevron shape at the surface as it bends back on itself inside the left handed medium. This strange effect has subsequently been interpreted as a negative refractive index. Left handed materials are triply negative: in response to electric and magnetic fields, and also in response to a ray of light. The problem Veselago faced was that there are no such materials found in nature and this field of research was abandoned for almost thirty years.

In 1999, Professor Pendry's Condensed Matter Theory group at Imperial College were collaborating with scientists from the Marconi Company on the new class of metamaterial. In normal materials the constituent atoms and molecules determine electrical and magnetic properties; they are much smaller than the wavelength of light so only the average response of the atoms matters. In the new materials an intermediate or meta-structure is engineered on a scale somewhere between atomic dimensions and the wavelength of radiation. The properties of Metamaterials are not limited by the periodic table and scientists can now engineer a huge range of electromagnetic responses that can be tailored to anything allowed by the laws of electromagnetism, says Professor Pendry.

The Imperial/Marconi team proposed the first design for a magnetic metamaterial, known as a 'Split Ring' structure. "A simple, plain ring of metal gives a magnetic response, but in the wrong direction," says Professor Pendry, "By cutting the ring the flow of current is interrupted by capacitance across the gap which, together with the inductance of the ring, makes a tuned circuit whose resonant frequency is determined by the inductance and capacitance. It is well known that a resonant structure responds with opposite signs on either side of the resonant frequency. Hence by tuning through the resonance the desired negative magnetic response is obtained: positive or negative."

A Split Ring viewed from above looks like a small letter 'C' inside a larger letter 'C', with the smaller C turned to face the opposite direction. A single Split Ring is the metamaterial equivalent of a magnetic atom; many Split Rings brought together in organised 2D or 3D grids form a magnetic metamaterial.

The original Split Rings were designed to operate at Gigahertz, or microwave, frequencies: orders of magnitude or hundreds or thousands of times below the Terahertz range. To get a magnetic response at Terahertz frequencies, the resonant frequency of the rings has to be raised, requiring researchers to build metamaterials with a much smaller size and spacing of the elements. The microstructure must always be much smaller than the wavelength so that radiation sees only average properties of the structure.

The key technical achievement by the authors at UCLA and UCSD was to fabricate the Terahertz-responding Split Rings using a special 'photo-proliferated process' that deposited the 3 micrometer-wide (0.003 mm) copper rings on a quartz base.

"This is a technological advance by the virtuosi of their craft," said Professor Pendry of the work by his colleagues at UCLA and UCSD.

"Looking to higher frequencies, in the optical region of the spectrum, magnetism just does not at present figure in our thinking because almost all materials are magnetically inert at these frequencies.

Optical properties are almost entirely due to the electrical response of materials to one of the two available fields - the electric field. Professor Pendry likens controlling light in this way to driving a motorbike with one hand - it's possible, but gives you only a fraction of the possible control and subtlety of resolution available in imaging. By bringing the magnetic field into play, he suggests, we may be able to harness a vastly more powerful imaging technology. "Now we are all on notice to include the possibility of optical magnetism when discussing new devices," he adds.

"We want to push the limits of frequency and produce structures that work in the infra red and ultimately in the visible. The march of magnetism towards the visible will enhance our power to control and use electromagnetic radiation in these frequency ranges." he said.

"So far we have only seen negative refraction at microwave or GHz frequencies but some of the most exciting applications in sensing, communication, and data storage would be at higher frequencies," he said. "But I believe that the really valuable applications have yet to be dreamt of. Think back to when the first lasers were made, the reaction was that they were just incredible, but what the hell would we do with them?" said Professor Pendry.
-end-
The Multidisciplinary University Research Initiative (MURI) of the US Office of Naval Research (ONR Grant # N00014-01-1-0803), funded the research.

For further information, please contact:
Professor John B Pendry
Condensed Matter Theory Group
Blackett Laboratory, Department of Physics
Imperial College London
Tel: 44-207-594-7606
E-mail: j.pendry@imperial.ac.uk

Tom Miller or Abigail Smith
Imperial College London Press Office
Tel: 44-207-594-6704
Mobile: 44-780-388-6248
E-mail: t.miller@imperial.ac.uk

Notes to Editors:
This research appears in the journal Science on Friday 5 March 2004. www.sciencemag.org
Title: 'THz Magnetic Response from Artificial Materials'
Authors: T. J. Yen 1, W.J. Padilla 2, N. Fang 1, D. C. Vier 2, D. R. Smith 2, J.B. Pendry 3, D.N. Basov 2, and X. Zhang 1. *John Pendry's 2000 paper is Phys. Rev. Lett. 85, 3966-9 (2000)

Short biography of Professor John Pendry FRS
Professor John Pendry FRS BA MA PhD FInstP, aged 60, has been Professor of Theoretical Solid State Physics at Imperial College London since 1981. Professor Pendry is a theoretical physicist renowned for his work on the structure of surfaces and their response to electrons and photons. He has published over 200 scientific papers and was elected a Fellow of the Royal Society and the Institute of Physics in 1984. At Imperial, he was dean of the Royal College of Science from 1993-1996; Head of the Department of Physics from 1998-2001; and first Principal of the Faculty of Physical Sciences from 2001-2002. From 1975-1981 he was Head of the Theory Group at the Daresbury Laboratory. Website: www.cmth.ph.ic.ac.uk

About Imperial College London
Consistently rated in the top three UK university institutions, Imperial College London is a world leading science-based university whose reputation for excellence in teaching and research attracts students (10,000) and staff (5,000) of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and management and delivers practical solutions that enhance the quality of life and the environment - underpinned by a dynamic enterprise culture.

Website: www.imperial.ac.uk

Imperial College London

Related Magnetic Fields Articles from Brightsurf:

Physicists circumvent centuries-old theory to cancel magnetic fields
A team of scientists including two physicists at the University of Sussex has found a way to circumvent a 178-year old theory which means they can effectively cancel magnetic fields at a distance.

Magnetic fields on the moon are the remnant of an ancient core dynamo
An international simulation study by scientists from the US, Australia, and Germany, shows that alternative explanatory models such as asteroid impacts do not generate sufficiently large magnetic fields.

Modelling extreme magnetic fields and temperature variation on distant stars
New research is helping to explain one of the big questions that has perplexed astrophysicists for the past 30 years - what causes the changing brightness of distant stars called magnetars.

Could megatesla magnetic fields be realized on Earth?
A team of researchers led by Osaka University discovered a novel mechanism called a ''microtube implosion,'' demonstrating the generation of megatesla-order magnetic fields, which is three orders of magnitude higher than those ever experimentally achieved.

Superconductors are super resilient to magnetic fields
A Professor at the University of Tsukuba provides a new theoretical mechanism that explains the ability of superconductive materials to bounce back from being exposed to a magnetic field.

A tiny instrument to measure the faintest magnetic fields
Physicists at the University of Basel have developed a minuscule instrument able to detect extremely faint magnetic fields.

Graphene sensors find subtleties in magnetic fields
Cornell researchers used an ultrathin graphene ''sandwich'' to create a tiny magnetic field sensor that can operate over a greater temperature range than previous sensors, while also detecting miniscule changes in magnetic fields that might otherwise get lost within a larger magnetic background.

Twisting magnetic fields for extreme plasma compression
A new spin on the magnetic compression of plasmas could improve materials science, nuclear fusion research, X-ray generation and laboratory astrophysics, research led by the University of Michigan suggests.

How magnetic fields and 3D printers will create the pills of tomorrow
Doctors could soon be administering an entire course of treatment for life-threatening conditions with a 3D printed capsule controlled by magnetic fields thanks to advances made by University of Sussex researchers.

Researchers develop ultra-sensitive device for detecting magnetic fields
The new magnetic sensor is inexpensive to make, works on minimal power and is 20 times more sensitive than many traditional sensors.

Read More: Magnetic Fields News and Magnetic Fields Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.