Screening the herbal pharmacy

March 04, 2008

Curing cancer with natural products - a case for shamans and herb women? Not at all, for many chemotherapies to fight cancer applied in modern medicine are natural products or were developed on the basis of natural substances. Thus, taxanes used in prostate and breast cancer treatment are made from yew trees. The popular periwinkle plant, which grows along the ground of many front yards, is the source of vinca alkaloids that are effective, for example, against malignant lymphomas. The modern anti-cancer drugs topotecan and irinotecan are derived from a constituent of the Chinese Happy Tree.

Looking for new compounds, doctors and scientists are increasingly focusing on substances from plants used in traditional medicine. About three quarters of the natural pharmaceutical compounds commonly used today are derived from plants of the traditional medicine of the people in various parts of the world. The chances of finding new substances with interesting working profiles in traditional medicinal plants are better than in common-or-garden botany.

In his search for active ingredients, Professor Dr. Thomas Efferth of the DKFZ has been concentrating on herbal remedies from traditional Chinese medicine with particularly well documented application range. Working together with colleagues in Mainz and Düsseldorf, Germany, Graz, Austria and Kunming in China, he launched a systematic compound search in 76 Chinese medicinal plants that are believed to be effective against malignant tumors and other growths. First results of this study have now been published.

Extracts from 18 of the plants under investigation were found to substantially suppress the growth of a cancer cell line in the culture dish. "With this success rate of about 24 percent, we are way above the results that could be expected from searching through large chemical substance libraries," Thomas Efferth explains.

The scientists proceeded to chemically separate, step by step, all active extracts, tracing the active component after each separation step by cell tests. The chemical structure of the compounds is analyzed using nuclear magnetic resonance and mass spectroscopy. "We are combining natural substance research with advanced analytical and molecular-biological methods", Efferth explains. "Plant constituents that seem particularly promising are immediately subjected to further tests." Such constituents include, for example, substances derived from the Rangoon Creeper, an ornamental plant with red flowers, or from Red-Root Sage. The latter contains three ingredients with powerful anti-tumor activity. The substances were found to suppress the growth of a specific tumor cell line that is particularly resistant to many commonly used cytotoxins due to overproduction of a transport protein in the cell wall. In contrast, a whole range of standard anti-cancer drugs fail to be effective against this cell.

„We can expect to find many interesting, yet unknown working mechanisms among the chemically highly diverse natural substances. Currently, we are aligning the effectiveness of the substances on 60 different cancer cell lines with the gene activity profiles of these cells. Thus, we can determine the exact gene products that are the cellular targets of our compounds. Thereby, it may be possible to discover whole new Achilles' heels of the cancer cell," said Efferth describing the next steps.
-end-
Thomas Efferth, Stefan Kahl, Kerstin Paulus, Michael Adams, Rolf Rauh, Herbert Boechzelt, Xiaojiang Hao, Bernd Kaina and Rudolf Bauer: Phytochemistry and Pharmacogenomics of Natural products derived from traditional Chinese medica with activity against tumor cells. Molecular Cancer Therapy 7 (1) 2008, page 152

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V.).

Helmholtz Association

Related Cancer Cell Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

New hydrogels for T-cell growth to be used in cancer immunotherapy
A team with the participation of researchers from the Spanish National Research Council (CSIC) has designed new hydrogels that allow the culture of T-cells or T-lymphocytes, cells of the immune system that are used in cancer immunotherapy since they have the capacity to destroy tumor cells.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Cellular stress causes cancer cell chemoresistance
Resistance of cancer cells against therapeutic agents is a major cause of treatment failure, especially in recurrent diseases.

Oncotarget Characterization of iPS87, a prostate cancer stem cell-like cell line
Oncotarget Volume 11, Issue 12 reported outside its natural niche, the cultured prostate cancer stem cells lost their tumor-inducing capability and stem cell marker expression after approximately 8 transfers at a 1:3 split ratio.

If cancer were easy, every cell would do it
A new paper puts an evolutionary twist on a classic question.

Cancer cell reversion may offer a new approach to colorectal cancer treatment
A novel approach to reverse the progression of healthy cells to malignant ones may offer a more effective way to eradicate colorectal cancer cells with far fewer side effects, according to a KAIST research team based in South Korea.

Penn researchers identify cancer cell defect driving resistance to CAR T cell therapy
Some cancer cells refuse to die, even in the face of powerful cellular immunotherapies like CAR T cell therapy, and new research is shedding light on why.

Targeting cell division in pancreatic cancer
Study provides new evidence of synergistic effects of drugs that inhibit cell division and support for further clinical trials.

Cancer cell's 'self eating' tactic may be its weakness
Researchers reveal how pancreatic cancer cells adapt to the low energy environment of a tumor: by eating their own mitochondria!

Read More: Cancer Cell News and Cancer Cell Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.