Protein target for diabetes drug regulates blood pressure

March 04, 2008

University of Iowa researchers have identified a molecular pathway in blood vessels that controls blood pressure and vascular function and may help explain why certain drugs for type II diabetes also appear to lower patients' blood pressure. The study is published in the March 5 issue of Cell Metabolism.

A majority of patients with type II diabetes, which is associated with obesity and metabolic syndrome, also are at risk for serious cardiovascular problems, including atherosclerosis, heart attack, stroke and hypertension. Understanding the biological pathways that link cardiovascular and metabolic function could lead to better treatments for the millions of Americans affected by these conditions.

The focus of the UI study is a protein called peroxisome proliferator-activated receptor gamma (PPAR gamma), which plays a critical role in fat metabolism and insulin action, and appears to link metabolic disorders, like type II diabetes, with cardiovascular disease.

Drugs called thiazolidinediones (TDZs), which are used to treat type II diabetes, target and activate PPAR gamma. In addition to controlling blood sugar, these drugs also appear to lower blood pressure.

The UI team led by Curt Sigmund, Ph.D., professor of internal medicine and molecular physiology and biophysics in the UI Roy J. and Lucille A. Carver College of Medicine, and Carmen Halabi, a student in the UI Medical Scientist Training Program and the study's lead author, tested the idea that these two beneficial effects of TZDs are produced through two separate PPAR gamma pathways.

Working with mice, the team knocked out the function of PPAR gamma in vascular smooth muscle, which surrounds blood vessels. The mice developed high blood pressure and very severe vascular dysfunction, which resembled the vascular disorders often seen in patients with advanced type II diabetes.

"It appears that when PPAR gamma is activated it initiates a cascade of events that protect the blood vessel," Sigmund explained. "When we interfere with the PPAR gamma pathway, those protective mechanisms are eliminated and the blood vessel becomes dysfunctional."

Although TZDs have been used for many years to treat type II diabetes, they do have several serious side effects, including weight gain and water retention. A recent study also suggested that one TZD (rosiglitazone, which is sold as Avandia) might increase the incidence of fatal and non-fatal heart attacks in diabetes patients. Avandia now carries an FDA warning.

"These side effects really highlight the need to figure out ways to dissociate beneficial effects from dangerous side effects," Sigmund said. "By understanding the mechanisms that lead to those effects we may be able to enhance benefits and minimize dangers.

"When a drug is found to have serious side effects, people often think that the molecule the drug targets is no longer relevant," he added. "But that is not the case. We know from our study and from others that the molecule is still very relevant. We just need drugs with higher specificity."

Sigmund also noted that Halabi's combined training in medicine and bench science helped to focus the genetic study on an area with direct clinical relevance.

"This study is at the interface of her knowledge of clinical medicine and the basic science," he said.

PPAR gamma is a transcription factor and when it is activated, a cascade of signals is initiated, which controls gene expression -- some genes are turned on and others are turned off. In particular, inflammatory genes are turned off and antioxidant genes are turned on.

Having identified the PPAR gamma pathway, the next question for the researchers is which genes are being turned on or off to produce the antihypertensive effect" Identifying these genes may lead to more specific ways of treating hypertension and vascular disease in patients with diabetes.
-end-
In addition to Sigmund and Halabi, the UI researchers included, Andreas Beyer, Ph.D., Willem de Lange, Ph.D., Henry Keen, Ph.D., Gary Baumbach, M.D., professor of pathology, and Frank Faraci, Ph.D., professor of internal medicine and pharmacology.

The study was funded by the National Institutes of Health, the American Heart Association and the Roy J. Carver Charitable Trust of Muscatine, Iowa.

STORY SOURCE: University of Iowa Health Science Relations, 5135 Westlawn, Iowa City, Iowa 52242-1178

MEDIA CONTACTS: Curt Sigmund, 319-335-7604, curt-sigmund@uiowa.edu; Jennifer Brown, 319-335-9917, jennifer-l-brown@uiowa.edu

University of Iowa

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.