Stem cells could halt osteoporosis, promote bone growth

March 04, 2009

Montreal, March 4th, 2009 - While interferon gamma sounds like an outer space weapon, it's actually a hormone produced by our own bodies, and it holds great promise to repair bones affected by osteoporosis. In a new study published in the journal Stem Cells, researchers from the Research Institute of the McGill University Health Centre explain that tweaking a certain group of multipotent stem cells (called mesenchymal stem cells) with interferon (IFN) gamma may promote bone growth.

"We have identified a new pathway, centered on IFN gamma, that controls the bone remodelling process both in-vivo and in-vitro," explains Dr. Kremer, the study's lead author and co-director of the Musculoskeletal Axis of the McGill University Health Centre. "More studies are required to describe it more precisely, but we are hopeful that it could lead to a better understanding of the underlying causes of osteoporosis, as well as to innovative treatments."

From cell culture to animal model

"First, we stimulated cultured mesenchymal stem cells to turn into bone cells (osteoblasts) in-vitro," says Dr Richard Kremer, a Professor with the McGill's Faculty of medicine. "We realised that this differentiation process involved IFN gamma-related genes, but also that these bone cells precursors could both be stimulated by IFN gamma and produced IFN gamma."

The next step was to move to an animal model where IFN gamma effect is blocked by inactivating its receptor, a model called IFN gamma receptor knock-out. Bone density tests, comparable to those used to diagnose people with osteoporosis, were conducted. The results revealed that these animals have significantly lower bone mass than their healthy counterparts In addition, their mesenchymal stem cells have a decreased ability to make bone. "These findings confirm that IFN gamma is an integral factor for mesenchymal stem cells' differentiation into osteoblasts also in-vivo," says Dr. Kremer.

New biological pathway, now hope for treatments

Both in-vitro and in-vivo results proved that IFN gamma is key to the differentiation of mesenchymal cells into bone cells, and to growth process of the bone. The exact pathway by which IFN acts on bone cells' formation will require more research to be described, but the strict correlation highlighted in this study leaves no doubt on its importance.

Until now, IFN gamma has been mostly used as an agent to prevent infections and to reinforce the immune system from illnesses such as cancer. These findings provide hope that IFN gamma itself, or another molecule involved in its pathway, could soon also become an efficient drug-target for an antidote for osteoporosis.
-end-
About osteoporosis

Osteoporosis is a disease in which bones become fragile and more likely to break. If left untreated, osteoporosis can progress painlessly until a bone fractures in the hip, spine and wrist. According to the World Health Organization, osteoporosis affects one in four women over the age of 50.

About the study

"Autocrine Regulation of Interferon γ in Mesenchymal Stem Cells Plays a Role in Early Osteoblastogenesis," published in the journal Stem Cells, was authored by Richard Kremer of the McGill University Health Centre, Gustavo Duque, Dao Chao Huang, Michael Macoritto, Xian Fang Yang of the McGill University Faculty of Medicine and Centre for Bone and Periodontal Research and Daniel Rivas of the McGill-affiliated Lady Davis Institute for Medical Research.

Funding

This study was supported by the Canadian Institutes for Health Research, the Dairy Farmers of Canada, the Natural Sciences and Engineering Research Council of Canada and the Fond de la Recherche en Santé du Québec.

On the Web

About Stem Cells: The International Journal of Cell Differentiation and Proliferation: http://stemcells.alphamedpress.org
About the McGill University Health Centre: www.muhc.ca/research

The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health-care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, the university health center affiliated with the Faculty of Medicine at McGill University. The institute supports over 600 researchers, nearly 1200 graduate and post-doctoral students and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge.

The Research Institute of the MUHC is supported in part by the Fonds de la recherche en santé du Québec.

For further details visit: www.muhc.ca/research.

McGill University Health Centre

Related Osteoporosis Articles from Brightsurf:

New opportunities for detecting osteoporosis
Osteoporosis can be detected through low dose computed tomography (LDCT) imaging tests performed for lung cancer screening or other purposes.

Oxytocin can help prevent osteoporosis
In a laboratory experiment with rats, Brazilian researchers succeeded in reversing natural processes associated with aging that lead to loss of bone density and strength.

New strategy against osteoporosis
An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

New review on management of osteoporosis in premenopausal women
An IOF and ECTS Working Group have published an updated review of literature published after 2017 on premenopausal osteoporosis.

Cardiac CT can double as osteoporosis test
Cardiac CT exams performed to assess heart health also provide an effective way to screen for osteoporosis, potentially speeding treatment to the previously undiagnosed, according to a new study.

Osteoporosis treatment may also protect against pneumonia
A recent study published in the Journal of Bone and Mineral Research found that nitrogen-containing bisphosphonates (N-BPs) such as alendronate, which are widely used to treat postmenopausal osteoporosis, are linked with lower risks of pneumonia and of dying from pneumonia.

New pharmaceutical target reverses osteoporosis in mice
Biomedical engineers at Duke University have discovered that an adenosine receptor called A2B can be pharmaceutically activated to reverse bone degradation caused by osteoporosis in mouse models of the disease.

A link between mitochondrial damage and osteoporosis
In healthy people, a tightly controlled process balances out the activity of osteoblasts, which build bone, and osteoclasts, which break it down.

Many stroke patients not screened for osteoporosis, despite known risks
Many stroke survivors have an increased risk of osteoporosis, falls or breaks when compared to healthy people.

Many postmenopausal women do not receive treatment for osteoporosis
The benefits of treating osteoporosis in postmenopausal women outweigh the perceived risks, according to a Clinical Practice Guideline issued today by the Endocrine Society.

Read More: Osteoporosis News and Osteoporosis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.