Crowded houses: Why our peripheral vision may not be as random as we think

March 04, 2010

As you read this, you may notice that the word directly in front of you is clear, but all the surrounding words are hard to make out. For most people, this effect - known as 'crowding' - is not a problem. However, for the millions of people worldwide who have lost their central vision through eye disease such as macular degeneration, it can make everyday tasks such as reading or recognising friends a challenge.

Despite the fact that crowding affects more than ninety-five per cent of the visual field, we know very little about how it occurs, aside from the fact that it happens not in the eye, but in parts of the brain that deal with seeing. With far fewer neurons processing inputs from the peripheral visual field in these regions compared to our central vision, the brain simplifies these areas to represent more efficiently what is in front of us.

Researchers had previously assumed that crowding makes us worse at recognising things by making our peripheral vision more random. Now, Wellcome Trust-funded researchers at UCL (University College London) and Harvard Medical School have reported in Current Biology that this process is anything but random.

The researchers asked volunteers to look out of the corner of their eye at a small patch of random visual noise (similar to the 'snow' seen when a TV loses its signal). When the patch of noise was surrounded by striped patches all oriented in a particular direction, the volunteers reported the 'noise' to be similarly oriented. The results suggest that crowding is actually a process that makes the world appear more regular by essentially 'blending' nearby objects together.

The researchers have used a real-world example to demonstrate the effect. Taking a photograph depicting a dramatic coastal village in Cinque Terre, Italy, the researchers 'scrambled' a large number of patches throughout the image by swapping individual pixels within each region. However, when one's eyes are fixed on the centre of the corrupted image (for example, on the centrally-located brown house), these 'noise' patches disappear and the image appears relatively undamaged. This image was recently named runner-up in the UCL 'Research Images as Art' competition.

"We believe that this tendency of our brains to assume that the world is regular may have evolved because fewer cells in the brain are devoted to the edges of our vision compared to the centre," explains Dr John Greenwood from the UCL Institute of Ophthalmology. "In other words, the brain is not capable of delivering anything more than a simplified sketch using these resources."

The researchers believe that understanding crowding promises to reveal much about how the visual brain works, and will also reveal the best way to present television images, text and the internet for people with damage to their central vision, for example through eye diseases such as macular degeneration and amblyopia ('lazy eye').

With amblyopia, for example, it has been suggested that crowding in the 'lazy' eye may occur in central vision in addition to the normal crowding in the peripheral visual field. Similarly, in macular degeneration patients lose their central vision and must rely on their peripheral visual field.

"If we understand when crowding does and does not occur, then we could potentially create text and images that are less likely to cause crowding," says Dr Greenwood. "Similarly, if we can understand how things look when they are crowded, we could potentially generate text and images that could be recognised even when crowding has had an effect."
-end-


Wellcome Trust

Related Macular Degeneration Articles from Brightsurf:

Levodopa may improve vision in patients with macular degeneration
Investigators have determined that treating patients with an advanced form of age-related macular degeneration (AMD) with levodopa, a safe and readily available drug commonly used to treat Parkinson's disease, stabilized and improved their vision.

Combating drug resistance in age-related macular degeneration
An international team of researchers led by Baylor College of Medicine and Houston Methodist has discovered a strategy that can potentially address a major challenge to the current treatment for age-related macular degeneration,

Study finds unexpected suspect in age-related macular degeneration
Scientists have identified an unexpected player in the immune reaction gone awry that causes vision loss in patients with age-related macular degeneration (AMD), according to a new study published today in eLife.

Potential way to halt blinding macular degeneration identified
It would be the first treatment for dry age-related macular degeneration and could significantly improve treatment for wet AMD.

Heating techniques could improve treatment of macular degeneration
Age-related macular degeneration is the primary cause of central vision loss and results in the center of the visual field being blurred or fully blacked out.

Eye's vulnerability to macular degeneration revealed
Scientists have found significant differences in the shape and biology of the same type of cell taken from different parts of the retina, according to a study in eLife.

Hallucinations associated with brain hyperactivity in people with macular degeneration
New research from The University of Queensland has shown for the first time that visual hallucinations in people with macular degeneration are associated with abnormally heightened activity in the visual cortex of the brain.

Eating leafy greens could help prevent macular degeneration
A new study has shown that eating vegetable nitrates, found mainly in green leafy vegetables and beetroot, could help reduce your risk of developing early-stage age-related macular degeneration (AMD).

An orange a day keeps macular degeneration away: 15-year study
A new study has shown that people who regularly eat oranges are less likely to develop macular degeneration than people who do not eat oranges.

Macular degeneration linked to aging immune cells
Studying mice and cells from patients, vision researchers at Washington University School of Medicine in St.

Read More: Macular Degeneration News and Macular Degeneration Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.