WSU study may lead to greater understanding of human genome regulation

March 04, 2011

DETROIT--Many multi-cellular animals use sex chromosomes to determine sex. In fruit flies and in humans, this produces XX for females and XY for males. Cellular mechanisms then kick into gear to compensate the two-to-one imbalance of X-linked genes in females and males.

Victoria Meller, Ph.D., associate professor of biological sciences and resident of Huntington Woods, Mich., received $301,392 from the National Institute of General Medical Sciences of the National Institutes of Health to investigate the role of a type of RNA in the X chromosome dosage compensation of Drosophila, or fruit flies. The findings are likely to improve the understanding of gene regulation in humans, which employ similar cellular tools to regulate their complex genome.

Uncovering clues in genetic regulation in humans is instrumental in understanding a wide range of pathologies, including cancer, developmental abnormalities and some birth defects. The misregulation of large groups of genes is characteristic of these diseases.

There are significant differences in the way humans and fruit flies achieve X chromosome dosage compensation. "Humans double the expression of genes on the X chromosome, then deactivate one X chromosome in the female," Meller said. "Taking a much simpler approach, fruit flies double the X-expression from the male X chromosome and keep the female level the same."

Although these approaches differ, humans and flies both use regulatory complexes that recognize the X chromosome. These complexes bind to and alter chromatin, the structure formed by DNA and associated proteins, to change the expression of the entire chromosome. "It's somewhat of a mystery, though, how these complexes identify the X chromosome," Meller said.

Recently, Meller's lab uncovered clues that a class of non-coding RNA called RNAi plays a role in X chromosome recognition. Her current study will explore the role of RNAi, along with short DNA sequences on the X chromosome, in X chromosome recognition.

Because of the similarities of human and fruit fly X chromosome recognition, findings from Meller's lab are likely to contribute to the understanding of gene regulation in humans. "Exploring how organisms achieve overall regulation of large groups of genes is basic research," said Meller. "Flies and mammals have the same tool kit for regulating their genome, and we are looking at how they use it."

"New information on how regulation works may lead to greater understanding of how those systems sometimes fail - and how future medical interventions can potentially treat these health problems," Meller said.
-end-
Wayne State University is one of the nation's pre-eminent public research universities in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world. For more information on research at Wayne State University, visit http://www.research.wayne.edu.

Wayne State University - Office of the Vice President for Research

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.