Deep Carbon: Quest underway to discover its quantity, movements, origins and forms in Earth

March 04, 2013

From Earth's surface to hundreds of kilometers deeper than oilmen drill, the Deep Carbon Observatory (DCO) is investigating the surprising quantity of carbon in the deep, dark Earth beyond photosynthesis.

The program is investigating deep carbon's movement in the slow convection of the mantle, the percolating fluids of the crust, and the violent emission from volcanoes. It searches for the ancient origin of the deep carbon, and the formation and transformation of its many forms, ranging from gas and oil to diamonds and deep microbes.

Ninety percent or more of Earth's carbon is thought to be locked away or in motion deep underground--a hidden dimension of the planet as poorly understood as it is profoundly important to life on the surface, according to scientists probing the world's innermost secrets in the decade-long, $500 million project.

In a landmark volume, DCO scientists say estimates of carbon bound in the metallic core alone range from 0.25 to 1 percent by weight. If 1 percent proves correct, the core by itself sequesters four times more carbon than all known carbon reservoirs in the rest of the planet--and 50,000,000 times as much as that held in the flora and fauna on Earth's relatively wafer-thin skin far above.

Studies of meteorites suggest that the material that first formed Earth contained about 3% by weight carbon. Confirmed sources of Earth's carbon, however -- life, carbonate rocks like limestone, and carbon dioxide in the oceans and atmosphere -- sum to only about 0.1% carbon content.

"Where is Earth's missing carbon?" asks Robert Hazen, Executive Director of the DCO, a global collaboration emerging as the largest ever conducted in this domain of science. "Significant amounts may be locked into minerals and melts in the mantle and core. If so, can we now find them?"

The DCO is expected to create profound new understanding of this planet and others, shedding unprecedented light on Earth's highly active subterranean environment -- the globe's oldest ecosystem -- including the secrets of volcanoes and diamonds, sources of oil and gas, and the origins of life itself.

Mysteries of deep carbon include:

Quantity:Movements:Origins:Forms:"Of the 88 naturally occurring, long-lived elements on Earth, carbon stands alone," says Dr. Hazen. "No other element contributes so centrally to the well-being and sustainability of life on Earth, including our human species."

After the first three years of its 10-year life, the Observatory describes its quest to discover the quantity, movement, origin, and forms of deep carbon in a landmark 700-page volume. Published with open public access online in the influential series Reviews in Mineralogy and Geochemistry, the book Carbon in Earth outlines questions that will guide DCO's program through 2019 and beyond.

Dr. Hazen, Senior Staff Scientist, Geophysical Laboratory, Carnegie Institution of Washington, co-edited the book with John A. Baross of the Seattle-based University of Washington and Adrian Jones of University College, London. More than 50 experts from nine countries (US, UK, France, Germany, Belgium, Switzerland, Italy, Canada, and Russia) contribute to the volume.

The book and details of the ambitious global program are the focus of DCO's International Science Meeting 3-5 March 2013 at the US National Academy of Sciences, Washington, DC. Prior major meetings have taken place in China, Russia, Germany, France, and the UK.

Among many highlights of the book:

Minerals made from life (Chapter 4): Four billion years ago, Earth featured few carbon-bearing minerals, and rocks were relatively uniform. Biological processes began to affect Earth's surface mineralogy as long as 3.8 billion years ago, when large-scale surface mineral deposits, including carbonate and iron formations, were precipitated. Later, life and its carbon-rich skeletons irreversibly transformed Earth's surface mineralogy. Life accounts for much of the progressive separation and concentration of the elements from their original relatively uniform distribution in the planet.

The chalk of Britain's white cliffs near Dover formed from calcium carbonate -- the skeletal remains of planktonic algae -- famously illustrates life making minerals. But the DCO is revealing a far richer array of carbon-based minerals derived from ancient life, from reefs formed by marine animals and microbes to the crystal lenses of the eyes of trilobites (extinct marine invertebrates) -- biomineralization that underscores the intricate co-evolution of the geosphere and the biosphere.

"An old guessing game began: 'animal, vegetable or mineral'? We're learning now that for some types of rock the answer may be, 'all three'," says Dr. Hazen.

Where does the carbon go? (Chapter 7): The stately process of plate tectonics drives Earth's deep carbon cycle, as dense carbon-rich crust sinks at subduction zones, while carbon returns to the surface through volcanism, primarily through the release of carbon dioxide. Thus, the familiar near-surface parts of the global carbon cycle--the atmosphere, the oceans, and the biosphere--are intimately linked to Earth's deep interior.

Rajdeep Dasgupta of Rice University in Houston, Texas, notes: "Sinking and in-gassing of carbon, as well as its storage and out-gassing, dynamically transform our planet. We are discovering more and more ways that modern Earth differs from its past on all time scales."

How old is your diamond? (Chapter 12): Carbon can form the cheap black graphite of a pencil or the superlatively hard, transparent crystal of a precious diamond. Jewelers and gemologists might enhance the financial value and significance of diamonds far beyond their clarity or size in carats through new technologies and techniques that can determine the age, depth and the part of Earth from which the precious stones came. Inclusions -- bits of minerals trapped where diamonds formed -- and the structure and composition of the diamond itself provide direct evidence of deep carbon's home and rank among the most valuable tools of scientists looking into the forbidding underground frontier. Diamonds, in short, are sparkling "eyes" offering a glimpse into Deep Earth.

Hydrogen as primal food and fuel (Chapter 18): Hydrogen fed primordial life, scientists suspect. DCO's intriguing investigations include the process called "serpentinization" during which basalt rock--the foundation stone of the ocean floor--erupts from deep-sea volcanoes and is exposed to seawater, causing a chemical reaction that produces both hydrogen and the mineral serpentine, characterized by long colorful veins. Was this energy-releasing process part of life's original recipe?

"Drill a hole one or two kilometers deep just about anywhere and you will find a sparse but hardy microbial community," says Isabelle Daniel of l'Université Claude Bernard Lyon 1, France. "These deep microbes, which live in the tiniest cracks and fissures in rocks, survive on the chemical energy of minerals."

Deep viruses (Chapter 20): Perhaps most enigmatic of all deep life forms are viruses in the crust and subsea sediment, which may play a profound role in microbial diversity. Wikipedia does not even have an article yet on the viriosphere, much less the deep viriosphere. Genetic material from viruses is passively inserted into the genome of microbes and may simply reside there for years before finding expression in some way, just as people who get shingles suffer from a chickenpox virus left over from childhood.

The lateral transfer of genes by viruses -- 5,000 of which in a line would fit across a fingernail -- "is an intriguing part of evolution," says Dr. Baross. "The deep subsurface may have acted as a natural laboratory for the origin of life, in which multiple 'experiments' could have been carried out in tandem." Viruses, he adds, "may manipulate the genomes of the hosts they infect throughout the subsurface, effectively resulting in a mutualistic, symbiotic relationship between host and virus that transcends traditional notions of viruses as parasites."

Galapagos of the Deep (Chapter 17): The variety of bacterial life at extreme high-pressure depths worldwide constitutes a subterranean "Galapagos," DCO scientists say, adding that such subsurface life comprises a large portion of Earth's total biomass -- estimated in the late 1990s to be a third to a half of all life, though that figure is now considered high.

DNA has unearthed a marvel of diversity among deep single-celled micro-organisms, notably Archaea. And deep fungi--organisms with complex cell structures (eukaryotes) in the marine subsurface, have been a scientific surprise.

"Given the extraordinarily low rates of respiration, subsurface microbes must reproduce very slowly, if at all," says Steven D'Hondt of the University of Rhode Island. "They take at least hundreds to thousands of years to reproduce and it's conceivable that they live without dividing for millions to tens of millions of years," he says. Still to be determined, Dr. D'Hondt notes, is the extent to which these organisms are "microbial zombies, incapable of being revived to a normal state."

Selected program goals

Earth's carbon recycling program: Parts of the ocean floor are constantly refreshed in a process by which material from Deep Earth is upwelled at mid-Ocean ridges. New rocks at ocean ridges replace denser old crust that sinks at subduction zones, where they are swallowed back into Deep Earth -- a recycling process that sequesters carbon under high temperature and pressure and hydrates rock kilometers deep. The DCO aims to multiply the precision of our estimates of the quantities and speeds of these processes.

Left to Right: Cross section of the modern plate tectonic cycle, including (1) creation of oceanic crust at mid-ocean ridges, (2) subduction at ocean trenches, (3) dehydration and melting beneath subduction volcanoes, (4) carbon storage in the upper mantle, (5) carbon transport in island arc volcanoes where oceanic crust is subducted beneath oceanic crust, (6) carbon emissions from volcanoes, and (7) diffuse carbon sources. Several features such as hotspot volcanoes and convergent margin volcanoes (where oceanic crust is subducted beneath continental crust) are not pictured here.

Deep Earth's exhalations: Another of the project's decade-long objectives: better tracking of carbon exhaled from Deep Earth. DCO scientists aim to establish round-the-clock automated, web-accessible observatories measuring CO2 emissions from 25 of the world's 150 most actively out-gassing volcanoes on five continents.

Other colleagues, meanwhile, are creating a systematic, internationally consistent way to measure and inventory carbon out-gassed from hot springs and other small, diffuse sources worldwide. Though they lack the dramatic flare of volcanoes, these small sources of carbon out-gassing collectively may represent a significant source from the deep interior.

DCO researchers will also estimate the volume of CO2 released as great plates of Earth crush together, for example in the still-rising Himalayan mountains, where thick layers of old carbon-rich rocks are squeezed, tortured, and broken down.

Distinguishing biotic and abiotic gas: Exploratory deep drill holes routinely find methane deposits but the source of some of this natural gas and other out-gassing methane (for example, for sea floor vents) is a matter of debate. Is it almost all recycled surface life? How much might come from deep abiotic processes--methane formed by chemical reactions in the lower crust or mantle? A radically new high-resolution mass spectrometer now under construction for the DCO may reliably distinguish biotic (or fossil) methane from abiotic methane within a couple of years.

New tools

Learning quantity, movements, origin, and forms of deep carbon requires new tools, such as the spectrometer mentioned above.

Using technology similar to medicine's three-dimensional x-ray CT scan, DCO scientists can study the way carbon-bearing fluids migrate through rocks under ultra high temperature and pressure, as in Earth's fractured crust.

New high-temperature and high-pressure devices feature a tiny space encased by diamonds. Scientists can use lasers to heat samples of different elements squeezed between these tiny anvils to temperatures and pressures (to 10 million atmospheres), mimicking Deep Earth and giant gas planets. Study of the altered properties of elements at extreme conditions may unlock secrets of both the origin and forms of carbon minerals, while possibly leading to a new generation of useful technological materials.

The program will also design and construct the next generation of bioreactor, to study microbial populations at high temperature and pressure to help determine the temperature, pressure, and environmental limits to microbial survival, growth, and reproduction.

Another crucial tool -- and major lasting legacy of the DCO -- will be an integrated open-access database of many kinds of information about Deep Earth and its carbon-bearing materials.

Areas of the world from which the DCO expects especially important field results include Oman, the Songliao Basin of China, South Africa, Siberia, and the deep sea floor. The DCO is cooperating with the International Continental Drilling Program and the International Ocean Drilling Program to deepen exploration.

Says Jesse Ausubel, at the Rockefeller University and Science Advisor to the Alfred P. Sloan Foundation, DCO's founding sponsor: "Earth is a steaming carbon pudding. The DCO will sniff and measure all our deep carbon emanations, and drastically revise our estimates of the abundance and fluxes of carbon."

Says Craig Schiffries, Director of the DCO: "We are already partnering with many academic institutions, professional societies, and government agencies, and some private sector enterprises. The Deep Carbon Observatory can succeed only as an international collaboration of many disciplines and all sectors -- public, private and academic."

Says co-editor John Baross: "The DCO may find totally new kinds of life as we reach greater depths, higher temperatures and pressures. And quite possibly Earth's deepest life doesn't use DNA and proteins the way normal cells do. Living biofilms may just spread out along deep cracks and fissures--perhaps as a growing layer of biomolecules. And, since efforts to detect deep life are based on looking for DNA and proteins, we must develop new techniques to search for deep and potentially weird life."

Adds co-editor Adrian Jones: "Our interest dives below the reach of oil and gas company drills down to depths where diamonds form. If they were alive today, we would welcome both Jules Verne and J.R.R. Tolkien on the program's steering committee. We aim to find the limits of life and come back to tell the tale."

"Carbon in Earth identifies a vast amount we know we don't know," concludes Dr. Hazen, "but we will also discover entirely unanticipated phenomena. Even a year ago we did not anticipate the book would have a chapter on the viriosphere."
Deep Carbon Observatory, International Science Meeting
US National Academy of Sciences
2101 Constitution Ave. N.W., Washington, DC 20001

For press accreditation: or

The meeting will convene DCO's global leadership, field researchers, and renowned experts guiding scientific work organized around four themes:

Extreme Physics and Chemistry
Reservoirs and Fluxes
Deep Energy
Deep Life

Public sessions: Monday, 4 March 2013

8:30 am

Welcome: Richard Meserve, President, Carnegie Institution of Washington

DCO Overview: Robert Hazen, Executive Director, Deep Carbon Observatory

8:45 am

Significant Advances in Deep Carbon Science, Session I

A series of short presentations featuring deep carbon science highlights and discoveries. Leading experts from around the globe will represent the DCO Executive Committee, Science Directorates, and Cross-Directorate and Instrumentation Initiatives. Moderator: Claude Jaupart, Institut de Physique du Globe de Paris, France


Barbara Sherwood Lollar, University of Toronto, Canada
Alexandra Navrotsky, University of California, Davis, USA
Roberto Bini, Universita di Firenze, Italy
Eiji Ohtani, Tohoku University, Japan
Ed Young, University of California, Los Angeles, USA
Shuhei Ono, MIT, USA

10:30 am Break

10:45 am

Significant Advances in Deep Carbon Science, Session II

Moderator: Adrian Jones, University College London, United Kingdom


Julie Huber, Marine Biological Laboratory, USA
Duane Moser, Desert Research Institute, USA
Benedicte Menez, Institut de Physique du Globe de Paris, France
Kai-Uwe Hinrichs, University of Bremen, Germany
Katherine Kelly, University of Rhode Island, USA
Patrick Allard, Institut de Physique du Globe de Paris, France

12:15 pm Lunch and Poster Session

1:15 pm

Welcome and Perspectives from the U.S. Geological Survey: Suzette Kimball, Acting Director, U.S. Geological Survey

DCO Science Achievements and Research Plans

Extreme Physics and Chemistry, Giulia Galli, University of California, Davis, USA

Deep Energy, David Cole, Ohio State University, USA

Deep Life, Mitchell Sogin, Marine Biological Laboratory, Brown University, USA

Reservoirs and Fluxes, Bernard Marty, Centre de Recherches Pétrographiques et Géochimiques, France

2:30 pm

Perspectives from U.S. Government Agencies and Scientific Organizations

Moderator: Russell Hemley, Director, Geophysical Laboratory, Carnegie Institution of Washington


William Brinkman, Director, Office of Science, U.S. Department of Energy; President, American Physical Society, 2002
Wendy Harrison, Director, Earth Sciences Division, U.S. National Science Foundation
P. Patrick Leahy, Executive Director, American Geosciences Institute
Marcia McNutt, Director, U.S. Geological Survey, Oct. 2009- Feb. 2013; President, American Geophysical Union, 2000-2002
Frank Press, President, U.S. National Academy of Sciences, 1981-1993; Science Advisor to the President of the United States, 1977-1980.

3:45 pm

Panel Discussion: Carbon in Earth

Carbon in Earth is the first major collective publication of the Deep Carbon Observatory. This 700-page book contains 20 chapters by more than 50 researchers from 9 countries. It integrates a vast body of research in physics, chemistry, biology, and Earth and spaces sciences. Every chapter synthesizes not only what we know about deep carbon, but also outlines unanswered questions that will guide the DCO for the remainder of the decade and beyond. Carbon in Earth is intended as a benchmark both for the DCO and the broader scientific community.

Host and Moderator:

Robert Hazen, Deep Carbon Observatory Executive Director, Carnegie Institution of Washington


John Baross, University of Washington, USA
Steven D'Hondt, University of Rhode Island, USA
Isabelle Daniel, Université Claude Bernard Lyon1, France
Rajdeep Dasgupta, Rice University, USA
Rachel Hazel, University College London, UK
Adrian Jones, University College London, UK

5:30 pm Reception and Poster Session

Carbon in Earth
Reviews in Mineralogy & Geochemistry Volume 75
Editors: Robert M. Hazen, Adrian P. Jones, and John A. Baross
Mineralogical Society of America; Geochemical Society, 2013, ISSN 1529-6466


1-6 Why Deep Carbon? Hazen & Schiffries
7-46 Carbon Mineralogy and Crystal Chemistry. Hazen et al.
47-77 Structure, Bonding, and Mineralogy of Carbon at Extreme Conditions. Oganov et al.
79-107 Carbon Mineral Evolution. Hazen et al.
109-148 The Chemistry of Carbon in Aqueous Fluids at Crustal and Upper-mantle Conditions: Experimental and Theoretical Constraints. Manning et al.
149-181 Primordial Origins of Earth's Carbon. Marty et al.
183-229 Ingassing, Storage, and Outgassing of Terrestrial Carbon Through Geologic Time. Dasgupta
231-250 Carbon in the Core: Its Influence on the Properties of Core and Mantle. Wood et al.
251-287 Carbon in Silicate Melts. Ni & Keppler
289-322 Carbonate Melts and Carbonatites. Jones et al.
323-354 Deep Carbon Emissions from Volcanoes. Burton et al.
355-421 Diamonds and the Geology of Mantle Carbon. Shirey et al.
423-448 Nanoprobes for Deep Carbon. Mao & Boulard
449-465 On the Origins of Deep Hydrocarbons. Sephton & Hazen
467-494 Laboratory Simulations of Abiotic Hydrocarbon Formation in Earth's Deep Subsurface. McCollom
495-545 Hydrocarbon Behavior at Nanoscale Interfaces. Cole et al.
547-574 Nature and Extent of the Deep Biosphere. Colwell & D'Hondt
575-606 Serpentinization, Carbon and Deep Life. Schrenk et al.
607-648 High-Pressure Biochemistry and Biophysics. Meersman et al.
649-675 The Deep Viriosphere: Assessing the Viral Impact on Microbial Community Dynamics in the Deep Subsurface. Anderson et al.

The Deep Carbon Observatory:

A 10-year global quest to discover the quantity, movements, origins, and forms of Earth's deep carbon; to probe the secrets of volcanoes and diamonds, sources of gas and oil, and life's deep limits and origins; and to report the known, unknown, and unknowable by 2019.

The DCO continues to seek the collaboration and contributions of all scientists interested in the unfolding, and as yet untold, story of carbon in Earth. Conducting expeditions, laboratory experiments, and simulations, we ultimately aim to advance significantly, and perhaps change fundamentally, our understanding of carbon and the role it plays in our lives.

The DCO aims to create legacies of instruments measuring at great depths, temperatures, and pressures; networks sensing fluxes of carbon-containing gases and fluids between the depths and the surface; open access databases about deep carbon; deep carbon researchers integrating geology, physics, chemistry, and biology; insights improving energy systems; and a public more engaged with deep carbon science.Deep Carbon Observatory Secretariat: Carnegie Institution of Washington
5251 Broad Branch Road, NW, Washington, DC 20015-1305; +1-202-478-8818

Deep Carbon Observatory

Related Viruses Articles from Brightsurf:

Sorting out viruses with machine learning
Researchers at Osaka University created a machine-learning system to identify single viral particles that cause respiratory diseases, including coronavirus, using silicon nanopores.

The rafts used by viruses
The study may suggest new strategies to limit virus attacks and prevent or combat diseases like Sars and Covid-19 based on biomedical and engineering principles.

Animals keep viruses in the sea in balance
A variety of sea animals can take up virus particles while filtering seawater for oxygen and food.

Hundreds of novel viruses discovered in insects
New viruses which cause diseases often come from animals. Well-known examples of this are the Zika virus transmitted by mosquitoes, bird flu viruses, as well as the MERS virus which is associated with camels.

First video of viruses assembling
For the first time, researchers have captured images of the formation of individual viruses, offering a real-time view into the kinetics of viral assembly.

Plant viruses may be reshaping our world
A new review article appearing in the journal Nature Reviews Microbiology highlights the evolution and ecology of plant viruses.

Checkmate for hepatitis B viruses in the liver
Researchers at Helmholtz Zentrum München and the Technical University of Munich, working in collaboration with researchers at the University Medical Center Hamburg-Eppendorf and the University Hospital Heidelberg, have for the first time succeeded in conquering a chronic infection with the hepatitis B virus in a mouse model.

How viruses outsmart their host cells
Viruses depend on host cells for replication, but how does a virus induce its host to transcribe its own genetic information alongside that of the virus, thus producing daughter viruses?

Mobile, instant diagnosis of viruses
In a first for plant virology, a team from CIRAD recently used nanopore technology to sequence the entire genomes of two yam RNA viruses.

How ancient viruses got cannabis high
THC and CBD, bioactive substances produced by cannabis and sought by medical patients and recreational users, sprung to life thanks to ancient colonization of the plant's genome by viruses, U of T researchers have found.

Read More: Viruses News and Viruses Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to