Nav: Home

A new machine learning model can classify lung cancer slides at the pathologist level

March 04, 2019

LEBANON, NH - Machine learning has improved dramatically in recent years and shown great promise in the field of medical image analysis. A team of research specialists at Dartmouth's Norris Cotton Cancer Center have utilized machine learning capabilities to assist with the challenging task of grading tumor patterns and subtypes of lung adenocarcinoma, the most common form of the leading cause of cancer-related deaths worldwide.

Currently, lung adenocarcinoma, requires pathologist's visual examination of lobectomy slides to determine the tumor patterns and subtypes. This classification has an important role in prognosis and determination of treatment for lung cancer, however is a difficult and subjective task. Using recent advances in machine learning, the team, led by Saeed Hassanpour, PhD, developed a deep neural network to classify different types of lung adenocarcinoma on histopathology slides, and found that the model performed on par with three practicing pathologists.

"Our study demonstrates that machine learning can achieve high performance on a challenging image classification task and has the potential to be an asset to lung cancer management," says Hassanpour. "Clinical implementation of our system would be able to assist pathologists for accurate classification of lung cancer subtypes, which is critical for prognosis and treatment."

The team's conclusions, "Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks" are newly published in Scientific Reports. Recognizing that the approach is potentially applicable to other histopathology image analysis tasks, Hassanpour's team made their code publicly available to promote new research and collaborations in this domain.

In addition to testing the deep learning model in a clinical setting to validate its ability to improve lung cancer classification, the team plans to apply the method to other challenging histopathology image analysis tasks in breast, esophageal, and colorectal cancer. "If validated through clinical trials, our neural network model can potentially be implemented in clinical practice to assist pathologists," says Hassanpour. "Our machine learning method is also fast and can process a slide in less than one minute, so it could help triage patients before examination by physicians and potentially greatly assist pathologists in the visual examination of slides."
-end-
Saeed Hassanpour, PhD, is an Assistant Professor of Biomedical Data Science, Assistant Professor of Epidemiology, and Assistant Professor of Computer Science in the Departments of Biomedical Data Science and Epidemiology at Dartmouth's Geisel School of Medicine, and member of the Cancer Population Science Research Program at Dartmouth's Norris Cotton Cancer Center. His research interests include biomedical informatics, machine learning, and personalized medicine. https://www.hassanpourlab.com/

About Norris Cotton Cancer Center at Dartmouth-Hitchcock

Norris Cotton Cancer Center combines advanced cancer research at Dartmouth's Geisel School of Medicine with patient-centered cancer care provided at Dartmouth-Hitchcock Medical Center in Lebanon, NH, at Dartmouth-Hitchcock regional locations in Manchester, Nashua and Keene, NH, and St. Johnsbury, VT, and at partner hospitals throughout New Hampshire and Vermont. It is one of 49 centers nationwide to earn the National Cancer Institute's "Comprehensive Cancer Center" designation. Learn more about Norris Cotton Cancer Center research, programs, and clinical trials online at cancer.dartmouth.edu.

Dartmouth-Hitchcock Medical Center

Related Lung Cancer Articles:

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Lung transplant patients face elevated lung cancer risk
In an American Journal of Transplantation study, lung cancer risk was increased after lung transplantation, especially in the native (non-transplanted) lung of single lung transplant recipients.
Proposed cancer treatment may boost lung cancer stem cells, study warns
Epigenetic therapies -- targeting enzymes that alter what genes are turned on or off in a cell -- are of growing interest in the cancer field as a way of making a cancer less aggressive or less malignant.
Are you at risk for lung cancer?
This question isn't only for people who've smoked a lot.
Better equipped in the fight against lung cancer
Lung cancer is the third most common type of cancer in Germany and the disease affects both men and women.
New liquid biopsy-based cancer model reveals data on deadly lung cancer
Small cell lung cancer (SCLC) accounts for 14 percent of all lung cancers and is often rapidly resistant to chemotherapy resulting in poor clinical outcomes.
Cancer drug leads to 'drastic decrease' in HIV infection in lung cancer patient
Doctors in France have found the first evidence that a cancer drug may be able to eradicate HIV-infected cells in humans.
Air pollution is associated with cancer mortality beyond lung cancer
A large scale epidemiological study associates some air pollutants with kidney, bladder and colorectal cancer death.
Free lung-cancer screening in the Augusta area finds more than double the cancer rate of previous screenings
The first year of free lung cancer screening in the Augusta, Ga., area found more than double the rate seen in a previous large, national study as well as a Massachusetts-based screening for this No.
Lung cancer may go undetected in kidney cancer patients
Could lung cancer be hiding in kidney cancer patients? Researchers with the Harold C.
More Lung Cancer News and Lung Cancer Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.