Let the sperm races begin

March 04, 2019

WASHINGTON, D.C., March 4, 2019 -- Faster, cheaper and less damaging to DNA, a microchip device that pits sperm racing against one another is being developed by Afrouz Ataei from Florida Atlantic University and may help to improve IVF success rates in the future.

Ataei is presenting the fitness stats on the sperm sorted by her device this week at the American Physical Society March Meeting in Boston, and she will also participate in a press conference describing the work. Information for logging on to watch and ask questions remotely is included at the end of this news release.

"An integral part of in vitro clinical procedures is the isolation of motile and morphologically normal viable sperm from the semen," said Ataei, who explained that this step increases the chances of successful egg fertilization in plastic dishes outside the body (in vitro).

However, the conventional method used to sort the speediest sperm involves centrifugation and several high-speed, G-force inducing spinning steps, which can damage the delicate DNA encased within a sperm's head. And an egg fertilized with sperm damaged in this manner is unlikely to progress to a viable embryo for implantation into the womb.

In women under 35 there is only a 21.5 percent chance of a single round of in vitro fertilization, or IVF, resulting in a full-term live birth. And with each round of IVF in the U.S. costing an average of $10,000-$15,000, this makes improving the odds of IVF success key for the financial and emotional well-being of many of the couples who experience fertility problems.

Ataei's device manages to select the faster swimmers without any damaging centrifugation steps. Instead, her device exploits the observation that sperm swim against an opposing flow of liquid at certain flow rates. The microchip is designed to induce hydrostatic pressure, which generates liquid flow without the use of other equipment.

"No other devices generate the flow in this way, and our device is much easier to use," said Ataei.

An unprocessed semen sample is injected into the chip's inlet until it fills the lower microchamber, and the sperm gradually swim upstream against the flow. If fit and fast enough, the sperm make it past the ultrathin membrane filter, which acts as the finish line, and into the top chamber. Ataei has analyzed the winner's fitness stats.

"After 45 minutes we collect the sample from the top retrieval chamber and start observing and analysing the sperm's velocity, whether they have DNA fragmentation, and what's the percentage of this compared with current methods like centrifugation," said Ataei. "We found that at a specific flow rate, we get the most motile sperm with highest motility."

"I think this device has potential for clinical use," Ataei added.

The team at Florida Atlantic University is continuing to optimize the microfluidic device, hoping to increase the concentration of sperm collected in the top chamber before they file a patent on their design.
-end-
The 2019 APS March Meeting presentation "Development of a Microfluidic Device to Sort Sperm based on their Swimming Potential against the Flow," by Afrouz Ataei, Andy W.C. Lau and Waseem Asghar, will take place Monday, March 4, at 8:12 a.m. in room 251 of the Boston Convention and Exhibition Center. Abstract: http://meetings.aps.org/Meeting/MAR19/Session/A48.2

MORE MEETING INFORMATION

The American Physical Society (APS) March Meeting is a major international conference and the largest physics meeting of the year. In 2019, the APS March Meeting will convene March 4-8 at the Boston Convention and Exhibition Center.

USEFUL LINKS

Register as Press: https://goo.gl/forms/ur9dE24zCO1IVsLu2

Press Site: https://www.aps.org/meetings/march/press.cfm

Meeting Abstracts: http://meetings.aps.org/Meeting/MAR19/APS_epitome

Main Meeting Page: https://www.aps.org/meetings/march/

Hotel and Travel: https://www.aps.org/meetings/march/hotel-travel.cfm

PRESS REGISTRATION

APS will provide free registration to all staff journalists representing media organizations, professional freelance journalists on assignment, and student journalists who are attending the meeting for the express purpose of gathering and reporting news and information. Press registration grants full access to all scientific sessions, to the press room, and to the press conferences. We will also provide complimentary press registration to university press officers, PIOs and other professional media relations staff. For press related questions about the APS March Meeting, email media@aps.org.

PRESS CONFERENCES

A series of press conferences on newsworthy research will be webcast live from the conference on Monday, March 4 through Thursday, March 7. A schedule will be released the week before the conference. Members of the media should register in advance at https://webcast.apswebcasting.com/go/aps-march-19.

ABOUT APS

The American Physical Society is a nonprofit membership organization working to advance and diffuse the knowledge of physics through its outstanding research journals, scientific meetings, and education, outreach, advocacy, and international activities. APS represents over 55,000 members, including physicists in academia, national laboratories, and industry in the United States and throughout the world. Society offices are located in College Park, Maryland (Headquarters), Ridge, New York, and Washington, D.C. Read more: https://www.aps.org/

American Physical Society

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.