Nav: Home

World-first program uncovers errors in biomedical research results

March 04, 2019

Cancer researcher Professor Jennifer Byrne from the University of Sydney is hoping to change this with the creation of a world-first fact-checking program that is tackling the problem of incorrectly published biomedical research results, whether intentional or otherwise.

In a paper, published in PLOS ONE, Professor Byrne and colleague Dr Cyril Labbé of the University of Grenoble Alpes (France) detail 'Seek & Blastn', the fact-checking computer program they have developed and made freely available to researchers.

The program verifies the identities of published nucleotide sequence reagents (DNA and RNA constructs used to target genes) by seeking out sequences within papers and running them through a database holding the wealth of knowledge on genes to date.

"Biomedical reagents are like ingredients in cooking. You use them to discover your experimental results. Doing an experiment with wrong reagents either means that you cook something different from what you thought you were cooking, or what you cook is a failure," said Byrne, Professor of Medical Oncology in the Sydney Medical School.

"Unfortunately with experiments, failures are not always as obvious as they are in the kitchen. And here we are dealing with fundamental genetic research, and other researchers are using these failures as building blocks for their own work."

In a cohort of 155 research papers, the new fact-checker combined with manual analysis identified 25 per cent of papers as having sequence errors. The researchers were testing on a suspected group of the papers so while the figure doesn't reflect a baseline error rate, the numbers are still startling.

"That's quite a lot of wrong sequences in a small group of papers and there will be many more out there, unfortunately, given that nucleotide sequence reagents have been described in literally hundreds of thousands of biomedical publications," said Professor Byrne.

The researchers found that errors represented both identity errors (sequences which were completely incorrect) and typographic errors (sequences that contained the equivalent of spelling mistakes). The authors propose that sequence identity errors could represent a particular hallmark of research fraud, and could be applied to identify fraudulent papers and manuscripts.

"Our hope is that tools like Seek & Blastn will prospectively deter publications that describe incorrect nucleotide sequence reagents and may flag existing publications so that their conclusions can be re-evaluated," said Professor Byrne.

Errors uncovered included:
  • Sequence reagents that are supposed to target a particular gene, but are in fact predicted to target a different gene from that stated in the publication, resulting in acquired data having nothing to do with system under study.
  • Sequence reagents that are not supposed to target any gene (as a negative control) but instead are predicted to target a human gene, meaning researchers aren't comparing experimental data to a proper negative control.
  • Sequence reagents that are supposed to target a human gene that in fact don't seem to target any gene, which could result in experiments not working but researchers being unaware.
Professor Byrne, named in Nature journal's Top 10 researcher for 2017, is well known for her detective work uncovering fraudulent results published in scientific journals.

Her work so far has resulted in seventeen retractions, but she says the process is slow and arduous, with the lack of responses from journals disheartening.

In an editorial in Nature last month she wrote: "Such papers claim to uncover mechanisms behind a swathe of cancers and rare diseases. They could derail efforts to identify easily measurable biomarkers for use in predicting disease outcomes or whether a drug will work.

"We create the literature that we deserve. We must act against this under-recognized threat to valid science."
-end-


University of Sydney

Related Genes Articles:

New alcohol genes uncovered
Do you have what is known as problematic alcohol use?
How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.
Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.
New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.
Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.
How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.
Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.
The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.
Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.
New genes on 'deteriorating' Y chromosome
Decoding Y chromosomes is difficult even with latest sequencing technologies.
More Genes News and Genes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.