Imaging technique lets ordinary cameras capture high-speed images of crack formation

March 04, 2019

WASHINGTON, D.C., March 4, 2019 -- Direct imaging of dynamic cracks as they occur can tell us a great deal about the physics of fracturing and properties of fracturing materials, which would benefit many fields ranging from materials science to engineering to construction. However, the fracturing process happens in the blink of an eye, with dynamic cracks propagating through several centimeters of some soft materials in only one-tenth of a second. High-speed cameras can be used to directly image dynamic cracking in some materials, but such equipment is expensive and can be difficult to use in some situations or with certain materials.

At the 2019 American Physical Society March Meeting in Boston, John Kolinski of the Ecole Polytechnique Federale de Lausanne in Lausanne, Switzerland, will present a new imaging technique known as the virtual frame technique that he and colleagues Samuel Dillavou and Shmuel Rubinstein of Harvard University developed that enables ordinary digital cameras to capture millions of frames per second for several seconds while maintaining high spatial resolution. He will also participate in a press conference describing the work. Information for logging on to watch and ask questions remotely is included at the end of this news release.

The virtual frame technique uses a camera sensor's bit depth, the amount of information the sensor can obtain, to dramatically increase frame rate. Cracking and many other physical processes are binary; for example, material is either cracked or not cracked. Thus, only two bits are needed to image a crack. An image sensor with a bit depth of 16 bits has more than 65,000 color or grayscale values, meaning it is possible to produce thousands of virtual frames during a single exposure. Using precise camera timing and a short pulse of intense light can increase frame rates even further. "In a recent study using the virtual frame technique, we obtain virtual frame rates exceeding 60 million per second using precise time-gating and a camera sensor with substantial bit-depth," Kolinski said.

Using the virtual frame technique, virtually any camera can directly image dynamic cracks as they form. Additionally, it can be used to study other fast physical processes that happen at interfaces between solids and fluids such as wetting that occurs when a liquid drop hits a material surface. The only requirement is that the solid be opaque, whether it's a construction material or soft substance such as a polymer. "Essentially any material could be imaged with the virtual frame technique," Kolinski said.

The researchers have tested the virtual frame technique using several types of cameras with different sensitivities and bit depths ranging from sophisticated high-speed and high-end consumer cameras to smartphone cameras. Each type of camera was able to achieve much higher frame rates using the virtual frame technique, which Kolinski said might lead to its use in future mobile device apps that could measure material properties.

This new imaging technique promises an easier way to study fracturing and other fast physical processes at material interfaces. Using ordinary consumer cameras to capture thousands or more frames per second makes it possible to study fracture toughness and other properties of construction materials, and if used in mobile apps one day, the new technique could complement or even replace expensive testing hardware with a piece of software.
The 2019 APS March Meeting presentation "The Virtual Frame Technique (VFT): direct imaging of fast cracks in soft elastomers," by Samuel Dillavou, Shmuel Rubinstein and John Kolinski, will take place Monday, March 4, at 10:00 a.m. in room 162B of the Boston Convention and Exhibition Center. ABSTRACT:


The American Physical Society (APS) March Meeting is a major international conference and the largest physics meeting of the year. In 2019, the APS March Meeting will convene March 4-8 at the Boston Convention and Exhibition Center.


Register as Press:

Press Site:

Meeting Abstracts:

Main Meeting Page:

Hotel and Travel:


APS will provide free registration to all staff journalists representing media organizations, professional freelance journalists on assignment, and student journalists who are attending the meeting for the express purpose of gathering and reporting news and information. Press registration grants full access to all scientific sessions, to the press room, and to the press conferences. We will also provide complimentary press registration to university press officers, PIOs and other professional media relations staff. For press related questions about the APS March Meeting, email


A series of press conferences on newsworthy research will be webcast live from the conference on Monday, March 4 through Thursday, March 7. A schedule will be released the week before the conference. Members of the media should register in advance at


The American Physical Society is a nonprofit membership organization working to advance and diffuse the knowledge of physics through its outstanding research journals, scientific meetings, and education, outreach, advocacy, and international activities. APS represents over 55,000 members, including physicists in academia, national laboratories, and industry in the United States and throughout the world. Society offices are located in College Park, Maryland (Headquarters), Ridge, New York, and Washington, D.C. Read more:

American Physical Society

Related Imaging Technique Articles from Brightsurf:

New imaging technique doubles visibility of brain tumors in scans
A new three-dimensional imaging technique has been developed that greatly improves the visibility of brain tumors in magnetic resonance imaging scans.

Tiniest secrets of integrated circuits revealed with new imaging technique
The secrets of the tiniest active structures in integrated circuits can be revealed using a non-destructive imaging technique, shows an international team of scientists from JKU and Keysight Technologies (Austria), ETH/EPFL/PSI and IBM Research - Europe (Switzerland) and from UCL (UK).

Novel label-free imaging technique brings out the inner light within T cells
A new imaging method developed by the Skala lab uses the natural autofluorescence within cells to assess T cell activity.

New technique takes 3D imaging an octave higher
A collaboration between Colorado State University and University of Illinois at Urbana-Champaign resulted in a new, 3D imaging technique to visualize tissues and other biological samples on a microscopic scale, with potential to assist with cancer or other disease diagnoses.

New technique offers higher resolution molecular imaging and analysis
The new approach from Northwestern Engineering could help researchers understand more complicated biomolecular interactions and characterize cells and diseases at the single-molecule level.

New imaging technique sheds light on adult zebrafish brain
Cornell scientists have developed a new technique for imaging a zebrafish's brain at all stages of its development, which could have implications for the study of human brain disorders, including autism.

Imaging technique gives catalytic 2D material engineering a better view
A scanning electrochemical cell imaging technique shows how nanoscale structural features affect the catalytic activity of MoS2 monolayers for hydrogen evolution reactions, report researchers at Kanazawa University in Angewandte Chemie International Edition.

New technique aims to improve imaging of cells
In research published in Proceedings of the National Academy of Sciences, a team from Rensselaer Polytechnic Institute developed and demonstrated a new technique for fluorescence lifetime imaging of tissue and cells in a fast and comprehensive manner -- laying the groundwork for use in a clinical setting.

New imaging technique reveals 'burst' of activity before cell death
Using a novel optical imaging technique, Northwestern University's Vadim Backman and researchers discovered connections between the macromolecular structure and dynamic movement of chromatin within eukaryotic cells.

Diattenuation imaging -- a promising imaging technique for brain research
A new imaging method provides structural information about brain tissue that was previously difficult to access.

Read More: Imaging Technique News and Imaging Technique Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to