Researchers discover new portal of entry for influenza viruses

March 04, 2019

Researchers from the Medical Center - University of Freiburg and the University of Zurich have discovered an entirely new infection route for influenza A viruses. While all previously known influenza A viruses bind sialic acid moieties on the host cell surface, the recently discovered bat-derived influenza A virus subtypes infect human and animal cells by utilizing MHC class II proteins. The immunologically relevant MHC class II molecules are ubiquitously found in many animal species, which is why the discovery will play an important role in assessing the risk of spill-over infections to other species than bats. The study, published on 20 February 2019 in the journal Nature, also provides new approaches to the evolutionary genesis of influenza viruses.

"In the lab, bat viruses can use the MHC class II complexes of mice, pigs, chickens, or humans to enter the cell. It is thus not unlikely that these bat-derived influenza viruses could be transmitted naturally from bats to other vertebrates and even humans," says Prof. Dr. Martin Schwemmle, study and research group leader at the Institute of Virology at the University Medical Center Freiburg.

Gene Expression Analysis and Gene Scissors Lead to Success

With a two-pronged strategy and a lot of effort, the researchers from Freiburg and Zurich finally succeeded in finding the cellular factor mediating the virus's entry into the host cell. First, the group of Prof. Dr. Silke Sterz from the Institute of Medical Virology of the University of Zurich compared the proteins produced in infectible cells to those produced in non-infectible cells. Using a technique called transcriptomic profiling, the researchers estimated the amount of cellular proteins via mRNA copies. This approach already provided strong indications for the MHC class II complex as the receptor candidate. Then, the team from Freiburg led by Prof. Schwemmle conducted a screening experiment in which they cut one of a total of 20,000 genes in single cells using the molecular scissor CRISPR-Cas. "Cells in which we switched off MHC class II were immune to infection. That was the final proof that the virus enters the cell with the help of MHC class II molecules," says the virologist.

The discovery of this second, sialic acid-independent, mechanism also raises the question which strategy was first in evolutionary terms. "It is quite possible that the newly discovered route of infection via MHC class II originates from the already known sialic acid pathway," says Prof. Schwemmle. The current study also raises new research questions: Are there other influenza viruses that use MHC class II proteins as host cell receptor? How simple can influenza viruses switch their receptors, and is it even possible that influenza viruses emerge, which can infect target cells by both receptors? "These are all questions that we now aiming to investigate, because influenza viruses are evidently more versatile than previously thought," says the virologist Prof. Schwemmle.
-end-
Original title of the publication: MHC class II proteins are cross-species entry receptors for bat influenza viruses

DOI: 10.1038/s41586-019-0955-3

Contact:

Prof. Dr. Martin Schwemmle
Research Group Leader
Institute of Virology
Medical Center - University of Freiburg
Phone: +49 (0)761 203-6526
martin.schwemmle@uniklinik-freiburg.de

University of Freiburg

Related Influenza Articles from Brightsurf:

Predicting influenza epidemics
Researchers at Linköping University, Sweden, have developed a unique method to predict influenza epidemics by combining several sources of data.

Common cold combats influenza
As the flu season approaches, a strained public health system may have a surprising ally -- the common cold virus.

Scent-sensing cells have a better way to fight influenza
Smell receptors that line the nose get hit by Influenza B just like other cells, but they are able to clear the infection without dying.

New antivirals for influenza and Zika
Leuven researchers have deployed synthetic amyloids to trigger protein misfolding as a strategy to combat the influenza A and Zika virus.

Assessment of deaths from COVID-19, seasonal influenza
Publicly available data were used to analyze the number of deaths from seasonal influenza deaths compared with deaths from COVID-19.

Obesity promotes virulence of influenza
Obesity promotes the virulence of the influenza virus, according to a study conducted in mice published in mBio, an open-access journal of the American Society for Microbiology.

Influenza: combating bacterial superinfection with the help of the microbiota
Frenc researchers and from Brazilian (Belo Horizonte), Scottish (Glasgow) and Danish (Copenhagen) laboratories have shown for the first time in mice that perturbation of the gut microbiota caused by the influenza virus favours secondary bacterial superinfection.

Chemists unveil the structure of an influenza B protein
MIT chemists have discovered the structure of an influenza B protein called BM2, a finding that could help researchers design drugs that block the protein and help prevent the virus from spreading.

How proteins help influenza A bind and slice its way to cells
Researchers have provided new insight on how two proteins help influenza A virus particles fight their way to human cells.

Eating elderberries can help minimize influenza symptoms
Conducted by Professor Fariba Deghani, Dr. Golnoosh Torabian and Dr.

Read More: Influenza News and Influenza Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.