Nav: Home

Mystery of green icebergs may soon be solved

March 04, 2019

WASHINGTON -- Researchers have proposed a new idea that may explain why some Antarctic icebergs are tinged emerald green rather than the normal blue, potentially solving a decades-long scientific mystery.

Pure ice is blue because ice absorbs more red light than blue light. Most icebergs appear white or blue when floating in seawater, but since the early 1900s explorers and sailors have reported seeing peculiar green icebergs around certain parts of Antarctica.

The green icebergs have been a curiosity to scientists for decades, but now glaciologists report in a new study that they suspect iron oxides in rock dust from Antarctica's mainland are turning some icebergs green. They formulated the new theory after Australian researchers discovered large amounts of iron in East Antarctica's Amery Ice Shelf. Watch a video of the new findings here.

Iron is a key nutrient for phytoplankton, microscopic plants that form the base of the marine food web. But iron is scarce in many areas of the ocean.

If experiments prove the new theory right, it would mean green icebergs are ferrying precious iron from Antarctica's mainland to the open sea when they break off, providing this key nutrient to the organisms that support nearly all marine life.

"It's like taking a package to the post office. The iceberg can deliver this iron out into the ocean far away, and then melt and deliver it to the phytoplankton that can use it as a nutrient," said Stephen Warren, a glaciologist at the University of Washington and lead author of the new study in the Journal of Geophysical Research: Oceans, a journal of the American Geophysical Union. "We always thought green icebergs were just an exotic curiosity, but now we think they may actually be important."

A mystery of color

Warren started studying the phenomenon on an Australian expedition in 1988, when he took a core sample from a green iceberg near the Amery Ice Shelf on the coast of East Antarctica.

Interestingly, the green ice he saw was a deep emerald hue much darker and clearer than that of normal icebergs - a signal to scientists that green ice might be different from regular iceberg ice.

"When we climbed up on that iceberg, the most amazing thing was actually not the color but rather the clarity," Warren said. "This ice had no bubbles. It was obvious that it was not ordinary glacier ice."

Icebergs break off of glaciers and ice shelves that jut out into the sea. Typical glacier ice forms when layers of snow build up and solidify over time, so it naturally has air pockets that reflect light.

But in Antarctica, some icebergs have a layer of what's called marine ice: ocean water frozen to the underside of an overhanging ice shelf. Marine ice is clearer and darker than glacier ice because it doesn't have any air pockets to reflect light.

When Warren and his colleagues analyzed that iceberg and other green icebergs sampled by Australian expeditions in the 1980s, they found the green parts were made of marine ice and not glacier ice. They suspected an impurity in the ocean water underneath the Amery Ice Shelf was turning some marine ice green.

Their first thought was that dissolved organic carbon, microscopic particles of long-dead marine plants and animals, was getting trapped in the ice as the water froze to the underside of the ice shelf. Dissolved organic carbon is yellow, so if pure ice is blue, the addition of yellow particles could turn the ice green, according to Warren.

But when Warren and his colleagues sampled icebergs on a subsequent expedition in 1996, they found green marine ice had the same amount of organic material as blue marine ice, so something else had to be responsible for the green color.

Rock dust in the sea

The problem nagged at Warren until a few years ago, when an oceanographer at the University of Tasmania tested an ice core from the Amery Ice Shelf for its iron content. She found marine ice near the bottom of the core had nearly 500 times more iron than the glacial ice above.

Iron oxides found in soil, rocks, and common rust tend to have warm, earthy hues - yellows, oranges, reds and browns. So Warren began to suspect iron oxides in the marine ice could turning blue ice green. But where was the iron coming from?

As glaciers flow over bedrock, they grind rocks to a fine powder known as glacial flour. When the ice meets the sea, this glacial flour flows into the ocean. If the rock dust becomes trapped under an ice shelf, the particles could be incorporated in marine ice as it forms.

Warren now suspects iron oxides in glacial flour from rocks on Antarctica's mainland are responsible for creating the stunning emerald icebergs. He and the Australian iron researchers now propose to sample icebergs of different colors for their iron content and light-reflecting properties. If their theory proves correct, green icebergs could be more important than scientists thought.
-end-
Founded in 1919, AGU is a not-for-profit scientific society dedicated to advancing Earth and space science for the benefit of humanity. We support 60,000 members, who reside in 135 countries, as well as our broader community, through high-quality scholarly publications, dynamic meetings, our dedication to science policy and science communications, and our commitment to building a diverse and inclusive workforce, as well as many other innovative programs. AGU is home to the award-winning news publication Eos, the Thriving Earth Exchange, where scientists and community leaders work together to tackle local issues, and a headquarters building that represents Washington, D.C.'s first net zero energy commercial renovation. We are celebrating our Centennial in 2019. #AGU100

AGU press contact:
Lauren Lipuma
+1 (202) 777-7396
llipuma@agu.org

Contact information for the researchers:
Stephen Warren, University of Washington
+1 (206) 543-7230
sgw@uw.edu

Notes for Journalists

This paper is open access. Journalists and public information officers (PIOs) can download a PDF copy of the article by clicking on this link: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018JC014479

Media files accompanying this press release can be downloaded at: https://aguorg.sharepoint.com/:f:/s/newsroom/Egnv09E-109KkoReeRTyNx4B6QNo47GqyIx8l6VghQhEPA?e=ePntJ6

Journalists and PIOs may also request a copy of the final paper by emailing Lauren Lipuma at llipuma@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.

Paper Title: "Green Icebergs Revisited"

Authors: Stephen G. Warren: Department of Atmospheric Sciences, University of Washington, Seattle, Washington, U.S.A.;

Collin S. Roesler: Department of Earth and Oceanographic Science, Bowdoin College, Brunswick, Maine, U.S.A.;

Richard E. Brandt: Atmospheric Sciences Research Center, University at Albany?State University of New York, Wilmington, NY, U.S.A.;

Mark Curran: Australian Antarctic Division, Kingston, Tasmania, Australia.

American Geophysical Union

Related Ice Shelf Articles:

Evidence: Antarctica's thinning ice shelves causing more ice to move from land into sea
New study provides the first evidence that thinning ice shelves around Antarctica are causing more ice to move from the land into the sea.
The shelf life of pyrite
What exactly triggers the increase in carbon dioxide concentrations that causes the transition from a glacial stage to a warm stage is not fully understood.
Dust in ice cores leads to new knowledge on the advancement of the ice before the ice age
Working with the ice core ReCap, drilled close to the coast in East Greenland, postdoc Marius Simonsen wondered why the dust particles from the interglacial period -- the warmer period of time between the ice ages -- were several times bigger than the dust particles from the ice age.
Vintage film shows Thwaites Glacier ice shelf melting faster than previously observed
Newly available archival film has revealed the eastern ice shelf of Thwaites Glacier in Antarctica is melting faster than previous estimates, suggesting the shelf may collapse sooner than expected.
Chipping away at how ice forms could keep windshields, power lines ice-free
How does ice form? Surprisingly, science hasn't fully answered that question.
Robots roaming in Antarctic waters reveal why Ross Ice Shelf melts rapidly in summer
A new paper offers fresh insight into the forces causing the world's largest ice shelf to melt.
Strong storms also play big role in Antarctic ice shelf collapse
Warming temperatures and changes in ocean circulation and salinity are driving the breakup of ice sheets in Antarctica, but a new study suggests that intense storms may help push the system over the edge.
Researchers discover ice is sliding toward edges off Greenland Ice Sheet
They found that ice slides over the bedrock much more than previous theories predicted of how ice on the Greenland Ice Sheet moves.
Study uncovers surprising melting patterns beneath Antarctica's Ross Ice Shelf
In a study published today in Nature Geoscience, scientists detail how they discovered an ancient geologic structure that restricts where ocean water flows, and reveals that local ocean currents may play a critical role in the ice shelf's future retreat.
Ice-sheet variability during the last ice age from the perspective of marine sediment
By using marine sediment cores from Northwestern Australia, a Japanese team led by National Institute of Polar Research (NIPR) and the University of Tokyo revealed that the global ice sheet during the last ice age had changed in shorter time scale than previously thought.
More Ice Shelf News and Ice Shelf Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.