Nav: Home

How new species arise in the sea

March 04, 2019

For a new species to evolve, two things are essential: a characteristic--such as a colour--unique to one species and a mating preference for this characteristic. For example, individuals from a blue fish species prefer blue mates and individuals from a red fish species prefer red mates. If the two species interbreed, the process of sexual recombination is expected to destroy the coupling between colour and mate preferences and form red individuals with a preference for blue mates and vice versa. This will prevent the two species from diverging, and this is one of the reasons why it has been thought for a long time that new species can only evolve in absolute isolation, without interbreeding.

However, the dynamics of this process depend on the exact number and location of genes underlying species characteristics and mate preferences, the strength of natural selection acting on these genes, and the amount of interbreeding between species. In a new study, Professor Oscar Puebla from GEOMAR Helmholtz Centre for Ocean Research Kiel in Germany together with colleagues from the Smithsonian Tropical Research Institute in Panama have found that natural selection can couple the evolution of genes for colour pattern and mate preferences when species still interbreed. The study has been published today in the international journal Nature Ecology and Evolution.

"To address this question, the first challenge was to identify an animal group in which species are still young and interbreed, with clear species characteristics, and in which the bases of reproductive isolation are well understood", Oscar Puebla explains. The hamlets, a group of closely related reef fishes from the wider Caribbean, constitute exactly such a group. The hamlets are extremely close genetically, differ essentially in terms of colour pattern, and are reproductively isolated through strong visually-based mate preferences.

A second difficulty consists in identifying the genes that underlie species differences and mate preferences. The authors of the new study have assembled a reference genome for the hamlets and sequenced the whole genomes of 110 individuals from three species in Panama, Belize and Honduras. "This powerful dataset allowed us to identify four narrow regions of the genome that are highly and consistently differentiated among species in a backdrop of almost no genetic differentiation in the rest of the genome", co-author Kosmas Hench from GEOMAR says. In line with the ecology and reproductive biology of the hamlets, these four intervals include genes involved in vision and colour pattern.

The data also show that vision and colour pattern genes remain coupled despite the fact that they are located on three different chromosomes and that species still interbreed. Such a coupling had been previously reported when the two sets of genes are very close to each other on chromosomes, in which case they are protected from sexual recombination, but not when they are on different chromosomes. By capturing the very earliest stages of speciation in hamlets, the team shows how selection can contribute to the creation of new species.

"A lot of closely related coral reef fishes differ in little else but color and pattern," said Owen McMillan, co-author and academic dean at the Smithsonian Tropical Research Institute. "I fully expect that the discoveries we have made in hamlets will apply to other forms of life and may ultimately explain the remarkable diversity of fishes on coral reefs around the world."
-end-


Helmholtz Centre for Ocean Research Kiel (GEOMAR)

Related Evolution Articles:

Artificial evolution of an industry
A research team has taken a deep dive into the newly emerging domain of 'forward-looking' business strategies that show firms have far more ability to actively influence the future of their markets than once thought.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.