Novel treatments offer new hope for patients with autoimmune disease

March 04, 2019

Autoimmune diseases, including type 1 diabetes and multiple sclerosis, arise when the body's immune cells attack itself. Current treatments eliminate these misfunctioning immune cells, but also destroy normal, protective immune cells, leaving patients susceptible to immune deficiency and opportunistic infections. Researchers at University of Utah Health have developed a new approach that targets the misfunctioning immune cells while leaving normal immune cells in place. The results of their study are available online in the March 4 issue of Nature Biomedical Engineering.

"We are really taking treatment for autoimmune disease in a new direction," begins Mingnan Chen, Ph.D., assistant professor in Pharmaceutical Chemistry at U of U Health. "This is the first time anyone has looked at the programmed cell death protein (PD-1) cells as a target to develop therapeutics for autoimmune disease."

The team tested the treatment in a mouse model that mimics type 1 diabetes. They found the treatment delayed the onset of diabetes in mice (29 weeks old compared to 19 weeks old for control-treated mice).

In addition, the treatment was also applied to a mouse multiple sclerosis model (experimental autoimmune encephalomyelitis). Not only did the treatment halt the progression of paralysis in the six mice in this model, these mice regained the ability to walk. The team monitored the mice for 25 days after treatment and found the paralysis did not return.

In a normal functioning immune system, the PD-1-expressing cells, including immune cells (B and T lymphocytes), contain a mechanism that acts like a checkpoint that prevents the cycle from attacking itself. In people with autoimmune disease, these cells, somehow, escape the checkpoint and the immune system remains in a state of alert, attacking body cells.

"We wanted to target PD-1-expressing cells," said Peng Zhao, Ph.D., a former graduate student in Chen's lab and first author on the paper. "Using this method, we may avoid long-term immune deficiency caused by common treatments for autoimmune disease."

Chen and his team engineered a protein molecule to deplete the misfunctioning PD-1-expressing cells from the body. The engineered molecule consists of three parts: an anti-PD-1 antibody fragment (?PD-1), a toxin (Pseudomonas exotoxin) and a binder (albumin-binding domain). The antibody fragment acts like a key that attaches and gaining access into the PD-1-expressing cells. The protein toxin kills the cell. The binder allows the engineered molecule to circulate in the body for a longer time.

In essence, Chen and his team developed a treatment that knocks down unhealthy immune cells to turn off the overactive immune response.

Chen and his team challenged the immune system of the mice in the study to determine whether the treatment had a negative effect on the healthy immune system. They found the mice in each model mounted a normal immune response.

The experimental therapeutics engineered by Chen and his team thus far is specific to mice. They are currently developing therapeutics applicable to humans.

"To make similar therapeutics for people, we would need to find the anti-human PD-1 antibody, like the anti-mouse PD-1 antibody," Chen said. "If we can generate the human version of therapeutics, I think we could make a huge impact in treating autoimmune disease."
-end-
The work was supported by University of Utah start-up Fund, a Huntsman Cancer Institute Pilot Grant, and a grant from the National Institutes of Health.

Chen and Zhao published Depletion of programmed death-1 positive cells leads to specific suppression of autoimmune disease along with Peng Wang, Shuyun Dong, Zemin Zhou, Simon Fisher, Xiao He and Robert Fujinami at U of U Health, Yanguang Cao at University of North Carolina, Hideo Yagita at Juntendo University School of Medicine, Tokyo, Japan and Song Guo Zheng at the Milton S. Hershey Medical Center, Hershey, Pa in the January issue of Nature Biomedical Engineering.

University of Utah Health

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.