Nav: Home

Right electrolyte doubles novel two-dimensional material's ability to store energy

March 04, 2019

OAK RIDGE, Tenn., March 4, 2019--Scientists at the Department of Energy's Oak Ridge National Laboratory, Drexel University and their partners have discovered a way to improve the energy density of promising energy-storage materials, conductive two-dimensional ceramics called MXenes. The findings are published in Nature Energy.

Today's batteries, which rely on charge stored in the bulk of their electrodes, offer high energy-storage capacity, but slow charging speeds limit their application in consumer electronics and electric vehicles. Tomorrow's energy-storage mainstays may be electrochemical capacitors, known as supercapacitors, which store charge at the surface of their electrode material for fast charging and discharging. However, at present supercapacitors lack the charge-storage capacity, or energy density, of batteries.

"The energy storage community is conservative, using the same few electrolyte solvents for all supercapacitors," said principal investigator Yury Gogotsi, a Drexel University professor who planned the study with his postdoctoral researcher Xuehang Wang. "New electrode materials like MXenes require electrolyte solvents that match their chemistry and properties."

The surfaces of different MXenes can be covered with diverse terminal groups, including oxygen, fluorine or hydroxyl species, which interact strongly and specifically with different solvents and dissolved salts in the electrolyte. A good electrolyte solvent-electrode match may then increase charging speed or boost storage capacity.

"Our study showed that the energy density of supercapacitors based on two-dimensional MXene materials can be significantly increased by choosing the appropriate solvent for the electrolyte," added co-author Lukas Vlcek of the University of Tennessee, who conducts research in UT and ORNL's Joint Institute for Computational Sciences. "By simply changing the solvent, we can double the charge storage."

The work was part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center led by ORNL and supported by the DOE Office of Science. FIRST research explores fluid-solid interface reactions with consequences for energy transport in everyday applications.

Drexel's Ke Li synthesized the titanium carbide MXene from a parent "MAX" ceramic--containing titanium (denoted by "M"), aluminum ("A") and carbon ("X")--by etching out the aluminum layers to form five-ply MXene monolayers of titanium carbide.

Subsequently, the researchers soaked the MXenes in lithium-based electrolytes in various solvents with dramatically different molecular structures and properties. The electrical charge was carried by lithium ions that easily insert themselves between MXene layers.

Transmission electron microscopy revealed the structural integrity of the materials before and after electrochemical experiments, whereas X-ray photoelectron spectroscopy and Raman spectroscopy characterized the MXene's composition and the chemical interactions between the MXene surface and the electrolyte solvent.

Electrochemical measurements showed that the maximum capacitance (amount of energy stored) was achieved using a less conductive electrolyte. This observation was unusual and counterintuitive because one would expect a commonly used acetonitrile solvent-based electrolyte, having the highest conductivity of all tested electrolytes, to deliver the best performance. In situ X-ray diffraction showed expansion and contraction of the MXene interlayer spacing during charging and discharging when acetonitrile was used, but no changes in the interlayer spacing when the propylene carbonate solvent was used. The latter solvent resulted in much higher capacitance. Furthermore, electrodes that don't expand when ions enter and exit are expected to survive a larger number of charge-discharge cycles.

To probe the dynamics of electrolyte solvent media confined in the MXene layers, the researchers turned to neutron scattering, which is sensitive to hydrogen atoms contained in the solvent molecules.

Finally, molecular dynamics simulations done by Vlcek revealed that interactions among the lithium ions, electrolyte solvents and MXene surfaces strongly depend on the size, molecular shape and polarity of the solvent molecules. In the case of a propylene carbonate-based electrolyte, the lithium ions are not surrounded by solvent and therefore pack tightly between MXene sheets. However, in other electrolytes, lithium ions carry solvent molecules along with them as the lithium ions migrate into the electrode, leading to its expansion upon charging. Modeling may guide the selection of future electrode-electrolyte solvent couples.

"Different solvents created different confined environments that then had profound influence on charge transport and interactions of ions with the MXene electrodes," Vlcek said. "This variety of structures and behaviors was made possible by the layered structure of MXene electrodes, which can respond to charging by easily expanding and contracting the interlayer space to accommodate a much wider range of solvents than electrodes with more rigid frameworks."

The title of the paper is "Influences from solvents on charge storage in titanium carbide MXenes."
UT-Battelle manages ORNL for DOE's Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit --by Dawn Levy


In this MXene electrode, choosing the appropriate solvent for the electrolyte can increase energy density significantly. This scanning electron microscopy image shows fine features of a film only 5 microns thick--approximately 10 times narrower than a human hair. Credit: Drexel University; image by Tyler Mathis


MXene electrodes were soaked in lithium-based electrolytes in three dramatically different solvents (acetonitrile, ACN; dimethyl sulfoxide, DMSO; and propylene carbonate, PC). The PC solvent produced the highest energy density because lithium ions were "naked" (not surrounded by solvent), allowing the tightest packing of positive charges between MXene layers. Credit: Drexel University/Oak Ridge National Laboratory, U.S. Dept. of Energy; schematic by Xuehang Wang and Lukas Vleck.

DOE/Oak Ridge National Laboratory

Related Lithium Articles:

A seaweed derivative could be just what lithium-sulfur batteries need
Lithium-sulfur batteries have great potential as a low-cost, high-energy, energy source for both vehicle and grid applications.
Risk of cardiac malformations from lithium during pregnancy less significant
New research suggests there may be a more modest increased risk of cardiac defects when using lithium during the first trimester of pregnancy.
Graphene-nanotube hybrid boosts lithium metal batteries
Rice University scientists build high-capacity lithium metal batteries with anodes made of a graphene-carbon nanotube hybrid.
Better cathode materials for lithium-sulphur-batteries
A team at the Helmholtz-Zentrum Berlin (HZB) has for the first time fabricated a nanomaterial made from nanoparticles of a titanium oxide compound (Ti4O7) that is characterized by an extremely large surface area, and tested it as a cathode material in lithium-sulphur batteries.
Stabilizing molecule could pave way for lithium-air fuel cell
Lithium-oxygen fuel cells boast energy density levels comparable to fossil fuels and are thus seen as a promising candidate for future transportation-related energy needs.
Freezing lithium batteries may make them safer and bendable
Columbia Engineering Professor Yuan Yang has developed a new method that could lead to lithium batteries that are safer, have longer battery life, and are bendable, providing new possibilities such as flexible smartphones.
Electrochemical performance of lithium-ion capacitors
Pre-lithiated multiwalled carbon nanotubes and activated carbon (AC) materials were used as anode and cathode respectively for Lithium-ion capacitors (LICs).
Lighter, more efficient, safer lithium-ion batteries
Researchers from Universidad Carlos III de Madrid and the Council for Scientific Research (initialed CSIC in Spanish) have patented a method for making new ceramic electrodes for lithium-ion batteries that are more efficient, cheaper, more resistant and safer than conventional batteries.
Clarifying how lithium ions ferry around in rechargeable batteries
IBS scientists observe the real-time ultrafast bonding of lithium ions with the solvents, in the same process that happens during charging and discharging of lithium batteries, and conclude that a new theory is needed.
New gel-like coating beefs up the performance of lithium-sulfur batteries
Yale scientists have developed an ultra-thin coating material that has the potential to extend the life and improve the efficiency of lithium-sulfur batteries, one of the most promising areas of energy research today.

Related Lithium Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...