Nav: Home

Researchers discover sustainable and natural alternative to man-made chemical pesticides

March 04, 2019

Repurposing a strain of beneficial bacteria could offer a safe, sustainable and natural alternative to man-made chemical pesticides, according to research from Cardiff University.

Finding natural approaches to sustain agriculture and food production is a major global challenge. Synthetic chemical pesticides have traditionally been used to protect crops, but there are growing concerns around their toxicity and the threat they pose to ecosystems.

Using genomic techniques, the team of researchers discovered that Burkholderia ambifaria bacteria have the potential to be used as biopesticides that are both effective and safe.

Biopesticides offer a natural means of protection and the group of bacteria called Burkholderia have been successfully used to protect crops against diseases. However, in the 1990s, Burkholderia bacteria were linked to serious lung infections in people with cystic fibrosis (CF), leading to concerns about their safety and eventual withdrawal of these biopesticides from the market.

"I have been working with Burkholderia for many years, primarily in relation to CF lung infections, which in turn led to a new line of antibiotic discovery research," explained Professor Eshwar Mahenthiralingam, lead researcher on the project, from Cardiff University's School of Biosciences.

"Working with plant scientist, Professor Jim Murray, Head of the School of Biosciences, and Doctoral Training Partnership student, Alex Mullins, we decided to take this research in a new direction, investigating Burkholderia-plant interactions and how they protect plants against disease.

"By sequencing the genomic DNA of the bacteria, we were able to identify Burkholderia's antibiotic-making gene, Cepacin. Further testing demonstrated that Cepacin offered highly effective protection against damping off - a horticultural disease caused by a fungus-like organism."

Using genetic engineering techniques similar to those used to produce live vaccines, the researchers are also exploring how to improve the safety of the bacteria.

"Burkholderia split their genomic DNA across 3 fragments, called replicons," said Professor Mahenthiralingam.

"We removed the smallest of these 3 replicons to create a mutant Burkholderia strain which, when tested on germinating peas, still demonstrated excellent biopesticidal properties."

Further work showed that this Burkholderia mutant did not persist in a mouse lung infection model, opening up the possibility of constructing biopesticidal strains that are incapable of causing infection but can still deliver effective plant protection.

In collaboration with chemists, Professor Greg Challis and Dr Matthew Jenner, at the University of Warwick, who helped discover Cepacin, the team recently obtained a grant award of over £1 million from BBSRC. This will help progress the next stage of research to develop an effective and safe biopesticide that does not build up to harmful levels in the environment.

"Beneficial bacteria such as Burkholderia that have co-evolved naturally with plants, have a key role to play in a sustainable future. We have to understand the risks, mitigate against them and seek a balance that works for all," continued Professor Mahenthiralingam.

"Through our work, we hope to make Burkholderia viable as an effective biopesticide, with the ultimate aim of making agriculture and food production safer, more sustainable, and toxin-free."
-end-
The research 'Genome mining identifies cepacin as a plantprotective metabolite of the biopesticidal bacterium Burkholderia ambifaria' is published in Nature Microbiology.

Notes for editors

1. For further information contact:

Mike Bishop
Communications and Marketing
Cardiff University
Tel: 02920 874499
Email: bishopm1@cardiff.ac.uk

Julia Short
Communications & Marketing
Cardiff University
Tel: 02920 875596
Email: ShortJ4@cardiff.ac.uk

2. Cardiff University is recognised in independent government assessments as one of Britain's leading teaching and research universities and is a member of the Russell Group of the UK's most research intensive universities. The 2014 Research Excellence Framework ranked the University 5th in the UK for research excellence. Among its academic staff are two Nobel Laureates, including the winner of the 2007 Nobel Prize for Medicine, Professor Sir Martin Evans. Founded by Royal Charter in 1883, today the University combines impressive modern facilities and a dynamic approach to teaching and research. The University's breadth of expertise encompasses: the College of Arts, Humanities and Social Sciences; the College of Biomedical and Life Sciences; and the College of Physical Sciences and Engineering, along with a longstanding commitment to lifelong learning. Cardiff's flagship Research Institutes are offering radical new approaches to pressing global problems. http://www.cardiff.ac.uk

Cardiff University

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".