Nav: Home

Protocells use DNA logic to communicate and compute

March 04, 2019

The work provides a step towards chemical cognition in synthetic protocells and could be useful in biosensing and therapeutics.

Molecular computers made from DNA use programmable interactions between DNA strands to transform DNA inputs into coded outputs. However, DNA computers are slow because they operate in a chemical soup where they rely on random molecular diffusion to execute a computational step.

Assembling these processes inside artificial cell-like entities (protocells) capable of sending DNA input and output signals to each other would increase the speed of the molecular computations and protect the entrapped DNA strands from degradation by enzymes present in blood.

In a new study published today in the journal Nature Nanotechnology, a team led by Professor Stephen Mann from the University of Bristol's School of Chemistry and Professor Tom de Greef from the Department of Biomedical Engineering at Eindhoven University of Technology have developed a new approach called BIO-PC (Biomolecular Implementation Of Protocell communication) based on communities of semi-permeable capsules (proteinosomes) containing a diversity of DNA logic gates that together can be used for molecular sensing and computation.

Compartmentalisation increases the speed, modularity and designability of the computational circuits, reduces cross-talk between the DNA strands, and enables molecular circuits to function in serum.

This new approach lays the groundwork for using protocell communication platforms to bring embedded molecular control circuits closer to practical applications in biosensing and therapeutics.

Professor Mann, from the Bristol Centre for Protolife Research, said: "The ability to chemically communicate between smart artificial cells using DNA logic codes opens up new opportunities at the interface between unconventional computing and life-like microscale systems.

"This should bring molecular control circuits closer to practical applications and provide new insights into how protocells capable of information processing might have operated at the origin of life."
-end-


University of Bristol

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".