Nav: Home

How megalodon's teeth evolved into the 'ultimate cutting tools'

March 04, 2019

GAINESVILLE, Fla. --- Megalodon, the largest shark that ever lived, is known only from its gigantic bladelike teeth, which can be more than 7 inches long. But these teeth, described by some scientists as the "ultimate cutting tools," took millions of years to evolve into their final, iconic form.

Megalodon's earliest ancestor, Otodus obliquus, sported three-pronged teeth that could have acted like a fork for grasping and tearing fast-moving fishes. In later megatooth shark species, teeth flattened and developed serrated edges, transitioning to a knifelike shape for killing and eating fleshy animals like whales and dolphins.

But the final tooth evolution in this lineage of powerful predators still took 12 million years, a new study shows. An analysis of teeth from megalodon and its immediate ancestor, Carcharocles chubutensis, traced the unusually slow, gradual shift from a large tooth flanked by mini-teeth - known as lateral cusplets - to teeth without these structures.

"This transition was a very long, drawn-out process, eventually resulting in the perfect cutting tool - a broad, flat tooth with uniform serrations," said study lead author Victor Perez, a doctoral student in geology at the Florida Museum of Natural History. "It's not yet clear why this process took millions of years and why this feature was lost."

Teeth can offer a wealth of information about an animal, including clues about its age, when it lived, its diet and whether it had certain diseases. Megalodon's teeth suggest its hunting style was likely a single-strike tactic, designed to immobilize its prey and allow it to bleed out, Perez said.

"It would just become scavenging after that," he said. "A shark wouldn't want to grab and hold onto a whale because it's going to thrash about and possibly injure the shark in the process."

Perez and his collaborators carried out a "census of teeth," analyzing 359 fossils with precise location information from the Calvert Cliffs on the western shore of Maryland's Chesapeake Bay - an ocean in C. chubutensis and megalodon's day. The cliffs provide an uninterrupted rock record from about 20 to 7.6 million years ago, a period that overlaps with these megatooth sharks.

The researchers noted a consistent decrease in the number of teeth with lateral cusplets over this timespan. About 87 percent of teeth from 20 to 17 million years ago had cusplets, falling to about 33 percent roughly 14.5 million years ago. By 7.6 million years, no fossil teeth had cusplets.

Adult C. chubutensis had cusplets while adult megalodon did not, but this feature is not a reliable identifier of which species a tooth belonged to, Perez said. Juvenile megalodon could have cusplets, making it impossible to discern whether a tooth with cusplets came from C. chubutensis or a young megalodon.

Some teeth analyzed for the study had tiny bumps or pronounced serrations where cusplets would be. A set of teeth from a single shark had cusplets on some, no cusplets on others and replacement teeth with reduced cusplets.

This is why paleontologists cannot pinpoint exactly when megalodon originated or when C. chubutensis went extinct, said Perez, who began the project as an intern at the Calvert Marine Museum.

"As paleontologists, we can't look at DNA to tell us what is a distinct species. We have to make distinctions based off of physical characteristics," he said. "We feel it's impossible to make a clean distinction between these two species of sharks. In this study, we just focused on the evolution of this single trait over time."

Lateral cusplets may have been used to grasp prey, Perez said, which could explain why they disappeared as these sharks shifted to a cutting style of feeding. Another possible function was preventing food from getting stuck between the sharks' teeth, which could lead to gum disease. But if the cusplets served a purpose, why lose them?

"It's still a mystery," he said. "We're wondering if something was tweaked in the genetic pathway of tooth development."

Perez's fascination with fossil sharks started at age 6 when he visited the Calvert Marine Museum.

"I got to take a shark tooth home from a discovery box. That set me off on the whole career path of studying fossils," he said.

That first tooth spawned an obsession in Perez, who lived about an hour from the Calvert Cliffs. On family trips to the beaches on the north end of the cliffs, he spent his time combing the area for shark teeth.

"That was the only thing I wanted to do," he said. "On a typical trip, I would leave with an average of 300 teeth."

For this study, he relied on the efforts of fellow beachcombers: The vast majority of teeth analyzed in the study were discovered by amateur fossil collectors and donated to museum collections.

"This study is almost entirely built on the contributions of amateur, avocational paleontologists," he said. "They are a valuable part of research."
-end-
The researchers published their findings in the Journal of Vertebrate Paleontology.

Robert Weems and John Nance of the Calvert Marine Museum, Stephen Godfrey of the Calvert Marine Museum and the National Museum of Natural History and Bretton Kent of the University of Maryland co-authored the study.

Florida Museum of Natural History

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...