Nav: Home

How to catch a magnetic monopole in the act

March 04, 2019

A research team led by the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has created a nanoscale "playground" on a chip that simulates the formation of exotic magnetic particles called monopoles. The study - published recently in Science Advances - could unlock the secrets to ever-smaller, more powerful memory devices, microelectronics, and next-generation hard drives that employ the power of magnetic spin to store data.

Follow the 'ice rules'

For years, other researchers have been trying to create a real-world model of a magnetic monopole - a theoretical magnetic, subatomic particle that has a single north or south pole. These elusive particles can be simulated and observed by manufacturing artificial spin ice materials - large arrays of nanomagnets that have structures analogous to water ice - wherein the arrangement of atoms isn't perfectly symmetrical, leading to residual north or south poles.

Opposites attract in magnetism (north poles are drawn to south poles, and vice-versa) so these single poles attempt to move to find their perfect match. But because conventional artificial spin ices are 2D systems, the monopoles are highly confined, and are therefore not realistic representations of how magnetic monopoles behave, said lead author Alan Farhan, who was a postdoctoral fellow at Berkeley Lab's Advanced Light Source (ALS) at the time of the study, and is now with the Paul Scherrer Institute in Switzerland.

To overcome this obstacle, the Berkeley Lab-led team simulated a nanoscale 3D system that follows "ice rules," a principle that governs how atoms arrange themselves in ice formed from water or the mineral pyrochlore.

"This is a crucial element of our work," said Farhan. "With our 3D system, a north monopole or south monopole can move wherever it wants to go, interacting with other particles in its environment like an isolated magnetic charge would - in other words, like a monopole."

A nanoworld on a chip

The team used sophisticated lithography tools developed at Berkeley Lab's Molecular Foundry, a nanoscale science research facility, to pattern a 3D, square lattice of nanomagnets. Each magnet in the lattice is about the size of a bacterium and rests on a flat, 1 centimeter-by-1 centimeter silicon wafer.

"It's a nanoworld - with tiny architecture on a tiny wafer," but atomically configured exactly like natural ice, said Farhan.

To build the nanostructure, the researchers synthesized two exposures, each one aligned within 20 to 30 nanometers. At the Molecular Foundry, co-author Scott Dhuey fabricated nanopatterns of four types of structures onto a tiny silicon chip. The chips were then studied at the ALS, a synchrotron light source research facility open to visiting scientists from around the world. The researchers used a technique called X-ray photoemission electron microscopy (PEEM), directing powerful beams of X-ray light sensitive to magnetic structures at the nanopatterns to observe how monopoles might form and move in response to changes in temperature.

In contrast to PEEM microscopes at other light sources, Berkeley Lab's PEEM3 microscope has a higher X-ray angle of incidence, minimizing shadow effects - which are similar to the shadows cast by a building when the sun strikes the surface at a certain angle. "In fact, the images recorded reveal no shadow effect whatsoever," said Farhan. "This makes the PEEM3 the most crucial element to this project's success."

Farhan added that the PEEM3 is the only microscope in the world that gives users full temperature control in the sub-100 Kelvin (below minus 280 degrees Fahrenheit) range, capturing in real time how emergent magnetic monopoles form as artificial frozen ice melts into a liquid, and as liquid evaporates into a gas-like state of magnetic charges - a form of matter known as plasma.

The researchers now hope to pattern smaller and smaller nanomagnets for the advancement of smaller yet more powerful spintronics - a sought-after field of microelectronics that taps into particles' magnetic spin properties to store more data in smaller devices such as magnetic hard drives.

Such devices would use magnetic films and superconducting thin films to deploy and manipulate magnetic monopoles to sort and store data based on the north or south direction of their poles - analogous to the ones and zeros in conventional magnetic storage devices.
The ALS and the Molecular Foundry are DOE Office of Science user facilities.

The work research was supported by the U.S. Department of Energy's Office of Science, and the Swiss National Science Foundation.

Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 13 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab's facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

DOE/Lawrence Berkeley National Laboratory

Related Nanoscale Articles:

Information storage with a nanoscale twist
Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives.
Researchers use acoustic waves to move fluids at the nanoscale
A team of mechanical engineers at the University of California San Diego has successfully used acoustic waves to move fluids through small channels at the nanoscale.
Core technology springs from nanoscale rods
Rice University scientists have demonstrated a method for reversibly changing the light emitted from metallic nanorods by moving atoms from one place to another inside the particles.
Tooth decay -- drilling down to the nanoscale
With one in two Australian children reported to have tooth decay in their permanent teeth by age 12, researchers from the University of Sydney believe they have identified some nanoscale elements that govern the behavior of our teeth.
Beating the heat a challenge at the nanoscale
A little heat from a laser can disrupt measurements of materials at the nanoscale, according to Rice University scientists.
New nanoscale technologies could revolutionize microscopes, study of disease
Research completed through a collaboration with University of Missouri engineers, biologists, and chemists could transform how scientists study molecules and cells at sub-microscopic (nanoscale) levels.
New tool allows scientists to visualize 'nanoscale' processes
Chemists at UC San Diego have developed a new tool that allows scientists for the first time to see, at the scale of five billionths of a meter, 'nanoscale' mixing processes occurring in liquids.
Heat and light get larger at the nanoscale
In a new study recently published in Nature Nanotechnology, researchers from Columbia Engineering, Cornell, and Stanford have demonstrated heat transfer can be made 100 times stronger than has been predicted, simply by bringing two objects extremely close -- at nanoscale distances -- without touching.
Revealing the ion transport at nanoscale
EPFL researchers have shown that a law of physics having to do with electron transport at nanoscale can also be analogously applied to the ion transport.
Systems analysis -- from the nanoscale to the global
Two major research grants were announced today by the Engineering and Physical Sciences Research Council.

Related Nanoscale Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#520 A Closer Look at Objectivism
This week we broach the topic of Objectivism. We'll be speaking with Keith Lockitch, senior fellow at the Ayn Rand Institute, about the philosophy of Objectivism as it's taught through Ayn Rand's writings. Then we'll speak with Denise Cummins, cognitive scientist, author and fellow at the Association for Psychological Science, about the impact of Objectivist ideology on society. Related links: This is what happens when you take Ayn Rand seriously Another Critic Who Doesn’t Care What Rand Thought or Why She Thought It, Only That She’s Wrong Quote is from "A Companion to Ayn Rand"