A faster, more accurate way to monitor drought

March 04, 2019

DURHAM, N.C. -- More than 2 billion people worldwide are affected by water shortages, wildfires, crop losses, forest diebacks or other environmental or economic woes brought on by drought.

A new monitoring method developed at Duke University allows scientists to identify the onset of drought sooner -- meaning conservation or remediation measures might be put into place sooner to help limit the damage.

"By combining surface and air temperature measurements from thousands of weather stations and satellite images, we can monitor current conditions across an entire region in near real time and identify the specific places where drought-induced thermal stress is occurring," said James S. Clark, Nicholas Professor of Environmental Sciences at Duke's Nicholas School of the Environment.

"Other methods now in use are based on data that can take a month or longer to become available," Clark said. "That means scientists or managers may not know a region is in drought until well after the conditions actually begin."

Clark and his colleagues have created a free public website, called Drought Eye, where they post monthly maps pinpointing locations across the continental United States where drought conditions may be occurring, based on the latest thermal stress data.

The thermal stress they've measured is the difference between the air temperature at a site and the surface temperature of the plant canopy there. Ordinarily, these canopies are cooled by water evaporating into the air through small pores, or stomata, in the plants' leaves. This explains why midday temperatures in a forest in summer are cooler than in a city. During prolonged periods without rain, however, the cooling mechanism breaks down. Ground moisture available to the trees becomes limited. To conserve their water supply, the trees close their stomata, allowing the canopy's surface to heat up.

"This led us to speculate that the canopy-atmosphere differential could provide a simple but highly accurate indicator of drought-induced water stress on a continental scale during warm and dry seasons, when the threat of wildfires and other impacts is most severe and timely monitoring is essential," said Bijan Seyednasrollah, a 2017 graduate of the Nicholas School, who led the research as part of his doctoral dissertation.

To test the hypothesis, he used measurements of thermal stress from thousands of sites to retroactively "predict" drought conditions across the contiguous U.S. over the past 15 years. He then ran similar tests using other widely employed drought indices to see which of the methods, new or old, produced results that most closely mirrored the historical record.

"Among the drought metrics that we considered, thermal stress had the highest correlation values and most accurately 'predicted' the onset of drought in a wide range of atmospheric and climate conditions," said Seyednasrollah, who is now a postdoctoral environmental scientist at Harvard University and Northern Arizona University.

The new index will enable local authorities to determine the risks of wildfires or identify areas where water use should be restricted in a more timely manner, Clark says. It can also reveal areas where forest dieback -- which affects forest health and can add to wildfire risks -- is occurring, because trees stop transpiring when they start to die. These diebacks are often linked to pest infestations or other environmental stresses, and are a huge problem in many parts of the West.
-end-
Jean-Christophe Domec, a visiting professor at the Nicholas School, co-authored the new study with Seyednasrollah and Clark.

They published their peer-reviewed findings Feb. 16 in the journal Agricultural and Forest Meteorology. Data for the study came from land-based weather stations, NASA's MODIS satellites, and PRISM Climate Data. Funding came from the National Science Foundation (grants #NSF-EF-1137364, #NSF-EF-1550911 and #NSF-IOS-1754893) and Duke University.

CITATION: "Spatiotemporal Sensitivity of Thermal Stress for Monitoring Canopy Hydrological Stress in Near Real-time," Bijan Seyednasrollah, Jean-Christophe Domec and James S. Clark. Agricultural and Forest Meteorology, Feb. 16, 2019. DOI: 10.1016/j.agformet.2019.02.016

Duke University

Related Drought Articles from Brightsurf:

Redefining drought in the US corn belt
As the climate trends warmer and drier, global food security increasingly hinges on crops' ability to withstand drought.

The cost of drought in Italy
Drought-induced economic losses ranged in Italy between 0.55 and 1.75 billion euros over the period 2001-2016, and droughts caused significant collateral effects not only on the agricultural sector, but also on food manufacturing industries.

Consequences of the 2018 summer drought
The drought that hit central and northern Europe in summer 2018 had serious effects on crops, forests and grasslands.

Songbirds reduce reproduction to help survive drought
New research from the University of Montana suggests tropical songbirds in both the Old and New Worlds reduce reproduction during severe droughts, and this - somewhat surprisingly -- may actually increase their survival rates.

Predicting drought in the American West just got more difficult
A new, USC-led study of more than 1,000 years of North American droughts and global conditions found that forecasting a lack of precipitation is rarely straightforward.

Where is the water during a drought?
In low precipitation periods - where and how is the limited available water distributed and what possibilities are there for improving retention in the soil and the landscape?

What does drought mean for endangered California salmon?
Droughts threatens California's endangered salmon population -- but pools that serve as drought refuges could make the difference between life and death for these vulnerable fish.

With shrinking snowpack, drought predictability melting away
New research from CU Boulder suggests that during the 21st century, our ability to predict drought using snow will literally melt away.

An evapotranspiration deficit drought index to detect drought impacts on ecosystems
The difference between actual and potential evapotranspiration, technically termed a standardized evapotranspiration deficit drought index (SEDI), can more sensitively capture the biological changes of ecosystems in response to the dynamics of drought intensity, compared with indices based on precipitation and temperature.

Sesame yields stable in drought conditions
Research shows adding sesame to cotton-sorghum crop rotations is possible in west Texas

Read More: Drought News and Drought Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.