Exciting apparatus helps atoms see the light

March 04, 2020

Researchers in the Light-Matter Interactions for Quantum Technologies Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) have generated Rydberg atoms - unusually large excited atoms - near nanometer-thin optical fibers. Their findings, published recently in Physical Review Research, mark progress toward a new platform for quantum information processing, which has the potential to revolutionize material and drug discoveries and provide more secure quantum communication.

Due to their extraordinary susceptibility to electric and magnetic fields, Rydberg atoms have long piqued physicists' interests. Used in conjunction with optical nanofibers, these hyper-sensitive atoms could play an instrumental role in new types of scalable quantum devices. However, Rydberg atoms are notably difficult to control.

"The main aim of the study was to bring Rydberg atoms into proximity with the nanofibers," said Krishnapriya Subramonian Rajasree, a PhD student at OIST and the first author of the study. "This set-up creates a new system for studying interactions between Rydberg atoms and nanofiber surfaces."

Unusual atoms

To carry out their research, the scientists used a device called a magneto-optical trap to capture a cluster of Rubidium (Rb) atoms. They reduced the temperature of the atoms to approximately 120 microKelvin - fractions of a degree above absolute zero and ran a nanofiber through the atom cloud.

Then, the scientists excited the Rb atoms to a more energetic Rydberg state, using a 482 nm beam of light traveling through the nanofiber. These Rydberg atoms, which formed around the nanofiber surface, are greater in size than their ordinary counterparts. When the atoms' electrons gained energy, they moved further from the atomic nucleus, creating larger atoms. This unusual size heightens the atoms' sensitivity to their environment and to the presence of other Rydberg atoms.

Through their experiment, the scientists brought the Rydberg atoms within mere nanometers of the optical nanofiber, enabling increased interaction between the atoms and light travelling in the nanofiber. Due to their abnormal properties, the Rydberg atoms escaped the magneto-optical trap. The scientists were able to understand aspects of Rydberg atom behavior by examining how the loss of atoms depended on the power and wavelength of the light.

The ability to use light travelling in an optical nanofiber to excite and then control Rydberg atoms may help pave the way toward methods of quantum communication, while also heralding incremental progress toward quantum computing, the scientists said.

"Understanding interactions between light and Rydberg atoms is crucial," said Dr. Jesse Everett, a post-doctoral scholar at OIST and a co-author of the study. "Harnessing these atoms could enable the secure routing of communication signals using very small amounts of light."

Moving forward, the researchers hope to further study properties of the Rydberg atoms in conjunction with optical nanofibers. In future studies, they intend to look at Rydberg atoms that are even bigger in size, to explore the possibilities and limits of this system.

Okinawa Institute of Science and Technology (OIST) Graduate University

Related Quantum Communication Articles from Brightsurf:

Theoreticians show which quantum systems are suitable for quantum simulations
A joint research group led by Prof. Jens Eisert of Freie Universit├Ąt Berlin and Helmholtz-Zentrum Berlin (HZB) has shown a way to simulate the quantum physical properties of complex solid state systems.

Revolutionary quantum breakthrough paves way for safer online communication
The world is one step closer to having a totally secure internet and an answer to the growing threat of cyber-attacks, thanks to a team of international scientists who have created a unique prototype which could transform how we communicate online.

New evidence for quantum fluctuations near a quantum critical point in a superconductor
A study has found evidence for quantum fluctuations near a quantum critical point in a superconductor.

Quantum simulation of quantum crystals
International research team describes the new possibilities offered by the use of ultracold dipolar atoms

Quantum machines learn "quantum data"
Skoltech scientists have shown that quantum-enhanced machine learning can be used on quantum (as opposed to classical) data, overcoming a significant slowdown common to these applications and opening a ''fertile ground to develop computational insights into quantum systems''.

'Giant atoms' enable quantum processing and communication in one
MIT researchers have introduced a quantum computing architecture that can perform low-error quantum computations while also rapidly sharing quantum information between processors.

Simulating quantum 'time travel' disproves butterfly effect in quantum realm
Using a quantum computer to simulate time travel, researchers have demonstrated that, in the quantum realm, there is no 'butterfly effect.' In the research, information--qubits, or quantum bits--'time travel' into the simulated past.

Orbital engineering of quantum confinement in high-Al-content AlGaN quantum well
Recently, professor Kang's group focus on the limitation of quantum confine band offset model, the hole states delocalization in high-Al-content AlGaN quantum well are understood in terms of orbital intercoupling.

Quantum classifiers with tailored quantum kernel?
Quantum information scientists have introduced a new method for machine learning classifications in quantum computing.

A Metal-like Quantum Gas: A pathbreaking platform for quantum simulation
Coherent and ultrafast laser excitation creates an exotic matter phase with spatially overlapping electronic wave-functions under nanometric control in an artificial micro-crystal of ultracold atoms.

Read More: Quantum Communication News and Quantum Communication Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.