SMART announces revolutionary new process for scientific applications

March 04, 2020

Singapore, 4 March 2020 - Researchers from Singapore-MIT Alliance for Research and Technology (SMART), MIT's research enterprise in Singapore, and National University of Singapore (NUS) have developed a unique method for generating and processing fluid droplets under previously unattainable conditions. The discovery can be transformative in a range of scientific applications including the study of biological and chemical processes, and can pave the way for more exquisite and targeted pharmaceutical and consumer products.

The new process is explained in a paper titled "Embedded droplet printing in yield-stress fluids", published in the prestigious journal, Proceedings of the National Academy of Sciences of the United States of America (PNAS). The project is part of the National Research Foundation's (NRF) Intra-CREATE Collaborative Grant, which enabled the collaboration between researchers from the Campus for Research Excellence and Technological Enterprise (CREATE) partner institutions SMART and NUS.

Dr Arif Zainuddin Nelson, a researcher under SMART and Intra-CREATE's project "Advanced Manufacturing of Pharmaceutical Drug Products using Modular Microfluidic Processes", led the development of the new method, which is the first of its kind to take advantage of yield-stress fluids to create the ideal conditions for experimentation, processing or observation of various samples. Using the embedded droplet printing approach, the research team was able to produce suspended and perfectly spherical drug-laden particles. The new approach avoids malformations that are common in conventional methods, which produce particles that are ovoid in shape and result in poor flowability during manufacturing of medicines.

"We have developed a set of tools that allows us to observe and process many different applications under this unique method, including chemical and biological reactions," said NUS Professor Saif Khan, who is also part of the research team. "Pharmaceuticals is just one of the areas where this could produce transformative results, which is where our work is focused. We could change the way drugs are made, formulate them in a way that improves quality, revolutionise the way existing drugs are taken by patients, and envision entirely new drugs that cannot be made today."

The embedded droplet printing method, which can also be used to alter the size and dosage of existing drugs, would be particularly useful for designing high potency medicine that needs to be taken in very small doses, such as drugs taken by cancer patients. It can also lead to more tailored medicine as the new process would make it easier to develop small batches of specialised drugs for specific patients.

"With the exception of going into space to be in zero-gravity, this method is the only way to achieve an environment where various processes can be observed in such an isolated state," said Dr Nelson. "However, achieving a zero-gravity state is prohibitively expensive, and we have created a substantially easier and cheaper process to achieve a unique environment where chemical and biological processes are undisturbed by the outside forces."

For pharmaceuticals, Intra-CREATE's new microfluidic process would allow the capital costs for the formation of high-quality drugs to be circumvented, leading to potentially cheaper medication as well. The microfluidic process can also enable a range of other applications outside of the manufacturing of medicine, including:Co-author of the research paper and Principal Investigator for SMART's Interdisciplinary Research Group, Critical Analytics for Manufacturing Personalised-Medicine (CAMP), MIT Professor Patrick Doyle said, "The new microfluidic process can be a gamechanger in a range of scientific experimentation, and the generality and wide impact of this method couldn't have been achieved without SMART and NUS working together."
-end-
About Singapore-MIT Alliance for Research and Technology (SMART) [???-??????????]

Singapore-MIT Alliance for Research and Technology (SMART) is MIT's Research Enterprise in Singapore, established by the Massachusetts Institute of Technology (MIT) in partnership with the National Research Foundation of Singapore (NRF) since 2007. SMART is the first entity in the Campus for Research Excellence and Technological Enterprise (CREATE) developed by NRF. SMART serves as an intellectual and innovation hub for research interactions between MIT and Singapore. Cutting-edge research projects in areas of interest to both Singapore and MIT are undertaken at SMART. SMART currently comprises an Innovation Centre and six Interdisciplinary Research Groups (IRGs): Antimicrobial Resistance (AMR), BioSystems and Micromechanics (BioSyM), Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Future Urban Mobility (FM) and Low Energy Electronic Systems (LEES).

SMART research is funded by the National Research Foundation Singapore under the CREATE programme.

For more information, please visit: http://smart.mit.edu

For media queries, please contact:

Tazkira Sattar
SMART@bluetotem.co
+65 8280 3055

Singapore-MIT Alliance for Research and Technology (SMART)

Related Chemical Reactions Articles from Brightsurf:

Shedding light on how urban grime affects chemical reactions in cities
Many city surfaces are coated with a layer of soot, pollutants, metals, organic compounds and other molecules known as ''urban grime.'' Chemical reactions that occur in this complex milieu can affect air and water quality.

Seeing chemical reactions with music
Audible sound enables chemical coloring and the coexistence of different chemical reactions in a solution.

Nanocatalysts that remotely control chemical reactions inside living cells
POSTECH professor In Su Lee's research team develops a magnetic field-induced heating 'hollow nanoreactors'.

New NMR method enables monitoring of chemical reactions in metal containers
Scientists have developed a new method of observing chemical reactions in metal containers.

Levitating droplets allow scientists to perform 'touchless' chemical reactions
Levitation has long been a staple of magic tricks and movies.

Predicting unpredictable reactions
New research from the University of Pittsburgh's Swanson School of Engineering, in collaboration with the Laboratory of Catalysis and Catalytic Processes (Department of Energy) at Politecnico di Milano in Milan, Italy, advances the field of computational catalysis by paving the way for the simulation of realistic catalysts under reaction conditions.

First-time direct proof of chemical reactions in particulates
Researchers at the Paul Scherrer Institute PSI have developed a new method to analyse particulate matter more precisely than ever before.

Finding the source of chemical reactions
In a collaborative project with MIT and other universities, scientists at Argonne National Laboratory have experimentally detected the fleeting transition state that occurs at the origin of a chemical reaction.

Accelerating chemical reactions without direct contact with a catalyst
Northwestern University researchers demonstrate a chemical reaction produced through an intermediary created by a separate chemical reaction, findings that could impact environmental remediation and fuel production.

Visualizing chemical reactions, e.g. from H2 and CO2 to synthetic natural gas
Scientists at EPFL have designed a reactor that can use IR thermography to visualize dynamic surface reactions and correlate it with other rapid gas analysis methods to obtain a holistic understanding of the reaction in rapidly changing conditions.

Read More: Chemical Reactions News and Chemical Reactions Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.